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Abstract—This article reviews recent advances in applying natural language processing (NLP) to Electronic Health Records (EHRs)

for computational phenotyping. NLP-based computational phenotyping has numerous applications including diagnosis categorization,

novel phenotype discovery, clinical trial screening, pharmacogenomics, drug-drug interaction (DDI), and adverse drug event (ADE)

detection, aswell as genome-wide and phenome-wide association studies. Significant progress has beenmade in algorithm development

and resource construction for computational phenotyping. Among the surveyedmethods, well-designed keyword search and rule-based

systems often achieve good performance. However, the construction of keyword and rule lists requires significant manual effort, which is

difficult to scale. Supervisedmachine learningmodels have been favored because they are capable of acquiring both classification patterns

and structures from data. Recently, deep learning and unsupervised learning have received growing attention, with the former favored for its

performance and the latter for its ability to find novel phenotypes. Integrating heterogeneous data sources have become increasingly

important and have shown promise in improvingmodel performance.Often, better performance is achieved by combiningmultiple

modalities of information. Despite thesemany advances, challenges and opportunities remain for NLP-based computational phenotyping,

including better model interpretability and generalizability, and proper characterization of feature relations in clinical narratives.

Index Terms—Electronic health records, natural language processing, computational phenotyping, machine learning
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1 INTRODUCTION

APHENOTYPE is an expression of the characteristics that
result from genotype variations and an organism’s

interactions with its environment. A phenotype may consist
of physical appearances (e.g., height, weight, BMI), biochemi-
cal processes, or behaviors [1]. In the medical domain, pheno-
types are often summarized by experts on the basis of clinical
observations. Nationwide adoption of Electronic Health
Records (EHRs) has given rise to a large amount of digital
health data, which can be used for secondary analysis [2].
Typical EHRs include structured data such as diagnosis
codes, vitals and physiologic measurements, as well as
unstructured clinical narratives such as progress notes and
discharge summaries. Computational phenotyping aims to
automaticallymine or predict clinically significant, or scientif-
ically meaningful, phenotypes from structured EHR data,
unstructured clinical narratives, or their combination.

As summarized in a 2013 review by Shivade et al. [3],
early computational phenotyping studies were often formu-
lated as supervised learning problems wherein a predefined
phenotype is provided, and the task is to construct a patient
cohort matching the definition’s criteria. Many of these

studies relied heavily on structured and coded patient data;
for example, using encodings such as International Classifi-
cation of Disease, 9th Revision (ICD-9) [4], its successor the
10th Revision (ICD-10) [5], Systematized Nomenclature of
Medicine-Clinical Terms (SNOMED CT) [6], RxNorm [7],
and Logical Observation Identifiers Names and Codes
(LOINC) [8]. On the other hand, the use of natural language
processing (NLP) for EHR-based computational phenotyp-
ing has been limited to term and keyword extraction [3].

Structured data typically capture patients’ demographic
information, lab values, medications, diagnoses, and encoun-
ters [9]. Although readily available and easily accessible, stud-
ies have concluded that structured data alone are not sufficient
to accurately infer phenotypes [10], [11]. For example, ICD-9
codes are mainly recorded for administrative purposes and
are influenced by billing requirements and avoidance of liabil-
ity [12], [13]. Consequently, these codes do not always accu-
rately reflect a patient’s underlying physiology. Furthermore,
not all patient information is well documented in structured
data, such as clinicians’ observations and insights [14]. As a
result, using structured data alone for phenotype identification
often results in low performance [11]. The limitations associ-
ated with structured data for computational phenotyping
have encouraged the use of clinical narratives, which typically
include clinicians’ notes, observations, referring letters, spe-
cialists’ reports, discharge summaries, and a record of commu-
nications between doctors and patients [15]. Unstructured
clinical narratives may summarize patients’ medical history,
diagnoses, medications, immunizations, allergies, radiology
images, and laboratory test results, in the forms of progress
notes, discharge reports, etc. [16].

Structured and unstructured EHR data are often stored
in vendor applications or at a healthcare enterprise data
warehouse. Typical EHR data are usually managed by a
local institution’s technicians and are accessible to trained
personnel or researchers. Institutional Review Boards at
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local institutions typically grant access to certain patient
cohorts and certain parts of EHRs. Database queries can
then be written and executed to retrieve desired structured
and unstructured EHR data. In addition to hospital-
collected data stored in EHRs, research data are increasingly
available, including public databases such as PubMed
[17], Textpresso [18], Human Protein Interaction Database
(HPID) [19], and MeInfoText [20]. With growing amount of
available data, efficient identification of relevant documents
is essential to the research community. Information retrieval
systems have been developed to identify text corresponding
to certain topics or areas from EHR data across multiple
fields. CoPub Mapper [21] ranks co-occurrence associations
between genes and biological terms from PubMed. iHOP
[22] links interacting proteins to their corresponding data-
bases and uses co-occurrence information to build a graphi-
cal interaction network. We refer the reader to the following
reviews for more details: [23] is a survey for biomedical text
mining in cancer research, [24] is a survey for biomedical
text mining, and [25] is a survey for web mining.

While the prevalence of EHR data presents an opportu-
nity for improved computational phenotyping, extracting
information from clinical narratives for accurate phenotyp-
ing requires both semantic and syntactic structures in the
narrative to be captured [26]. Scaling such tasks to large
cohort studies is laborious, time-consuming, and typically
requires extensive data collection and annotation.

Recently, NLP methods for EHR-based computational
phenotyping have seen extensive development, extending
beyond basic term and keyword extraction. One focus of
recent studies is formulating computational phenotyping as
an unsupervised learning problem to automatically discover
unknown phenotypes. The construction of richer features
such as relations between medical concepts enables greater
expressive power when encoding patient status, compared to
terms and keywords. More advancedmachine learningmeth-
ods, such as deep learning, have also been increasingly
adopted to learn the underlying patient representation.

This article reviews the literature on NLP methods
for EHR-based computational phenotyping, emphasizing
recent developments. We first describe several applications
of computational phenotyping. We then summarize the
state-of-the-art NLP methods for computational phenotyp-
ing and compare their advantages and disadvantages. We
also describe the combinations of data modalities, feature
learning, and relation extraction that have been used to aid
computational phenotyping. Finally, we discuss challenges
and opportunities to NLP methods for computational phe-
notyping and highlight a few promising future directions.

2 APPLICATIONS OF EHR-BASED

COMPUTATIONAL PHENOTYPING

Computational phenotyping has facilitated biomedical and
clinical research across many applications, including patient
diagnosis categorization, novel phenotype discovery, clinical
trial screening, pharmacogenomics, drug-drug interaction
(DDI) and adverse drug event (ADE) detection, and down-
stream genomics studies.

2.1 Diagnosis Categorization
One of themost important applications of computational phe-
notyping is diagnosis categorization, which enables the auto-
mated and efficient identification of patient cohorts for

secondary analysis [15], [27], [28], [29], [30], [31]. Awide range
of diseases has been investigated in the past, including sus-
pected tuberculosis (TB) [32], [33], colorectal cancer [34], rheu-
matoid arthritis [35], diabetes [36], heart failure [37], [38],
neuropsychiatric disorders [39], etc. These applications have
extended from disease identification to disease subtyping
such as lung cancer stage evaluation [40], or subsequent event
detection such as breast cancer recurrence detection [41] and
cancermetastases detection [42].

2.2 Novel Phenotype Discovery
Computational phenotyping has been applied to discover
novel phenotypes and sub-phenotypes. Traditionally, a clini-
cal phenotype is classified into a particular category if it meets
a set of criteria developed by domain experts [43]. Instead,
semi-supervised or unsupervised methods can detect traits
based on intrinsic data patterns with moderate or minimal
expert guidance, which may promote the discovery of novel
phenotypes or sub-phenotypes. For example, in a study by
Marlin et al. [44], a diagonal covariance Gaussian mixture
model was applied on physiological time series data for
patient clustering. They discovered distinct, recognizable
physiological patterns and they concluded that interpreta-
tions of these patterns could offer prognostic significance.
Doshi-Velez et al. [45] applied hierarchical clustering to
define subgroups with distinct courses among autism spec-
trum disorders. They applied ICD-9 codes to construct time
series features. In the study, they identified four subgroups
among 4934 patients; one subgroup was characterized by
seizures; one subgroup was characterized by multisystem
disorders including gastrointestinal disorders, auditory dis-
orders, and infections; one subgroup was characterized by
psychiatric disorders; one subgroup could not be further
resolved. In a study by Ho et al. [46], they applied tensor fac-
torization [47], [48] on medication orders to generate pheno-
types without supervision. In a case study searching for 50
phenotypes in heart failure, they achieved better perfor-
mance than principal component analysis (PCA) with
respect to area under curve (AUC) score and model stability.
Further interpretations of these novel phenotypes have
potential to offer us useful clinical information. Shah et al.
[49] clustered patients with preserved ejection fraction into
three novel subgroups, which offers meaningful insight into
clinical characteristics, cardiac structures, and outcomes.

2.3 Clinical Trial Screening
Leveraging EHR data can benefit clinical trial recruitment
[50]. In recent years, echoing the rising availability of EHR
data and the increased volume of clinical trial recruitments,
computational phenotyping for clinical trial screening has
become an active area. Multiple systems have been
designed for this purpose [51], [52], [53], [54]. Electronic
screening can improve efficiency in clinical trial recruit-
ment, and automated querying over trials can support
clinical knowledge curation [55]. A typical computational
phenotyping system for clinical trial eligibility identifies
patients whose profiles—extracted from structured data
and narratives—matched the trial criteria in order to reduce
the pool of candidates for further staff screening.

2.4 Pharmacogenomics
Pharmacogenomics aims to investigate the interaction
between genes, gene products, and therapeutic substances.
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Much of this knowledge exists in scientific literature and
curated databases. Computational phenotyping applications
have been developed to mine pharmacogenomics knowledge
[56], [57], [58], [59]. These phenotyping tools automatically
scan, retrieve, and summarize the literature for meaningful
phenotypes. Recent studies have adopted semantic and syn-
tactic analyses as well as statistical machine learning tools to
mine targeted pharmacogenomics relations from scientific lit-
erature and clinical records [58].

2.5 DDIs and ADEs
Drug-drug interactions (DDIs) happen when one drug
affects the activity of another drug that has been simulta-
neously administered. Adverse drug events (ADEs) refer to
unexpected injuries caused by administering medication.
Detecting DDIs and ADEs can guide the process of drug
development and drug administration. The impact of these
negative outcomes has triggered huge efforts from industry
and the scientific community to develop models exploring
the relationships between drugs and biochemical pathways
in order to enable the discovery of DDIs [60], [61] and ADEs
[26], [62], [63], [64].

2.6 GWAS and PheWAS
Cohorts obtained by computational phenotyping have
benefited downstream genomic studies [65], using techniques
such as Genome-wide association studies (GWAS) and
phenome-wide association studies (PheWAS). In GWAS,
researchers link genomic information fromDNA bioreposito-
ries to EHR data to detect associations between phenotypes
and genes. In such studies, case-control cohorts can be gener-
ated without labor intensive annotation, which is especially
important for rare variant studies where a large number of
patients need to be screened. Much research [66], [67], [68],
[69] has explored EHR phenotyping algorithms to facilitate
GWAS. We refer the reader to reviews by Bush et al. [70] and
Wei et al. [65] for more details. PheWAS studies analyze a
wide range of phenotypes affected by a specific genetic vari-
ant. Denny et al. [71] applied computational phenotyping on
EHR to automatically detect 776 different disease populations
and their matched controls. Statistical tests were then carried
out to determine associations between single nucleotide poly-
morphisms and multiple disease phenotypes. Additional
studies have established the efficiency of EHR-based Phe-
WAS to detect genetic association [72], [73], [74]. Compared to
traditional genomic research, computational phenotyping has
driven discovery of variant-disease associations and has facil-
itated the completion of genomic research in a timely and
lower costmanner [66].

3 METHODS FOR NLP-BASED

COMPUTATIONAL PHENOTYPING

NLP methods for computational phenotyping algorithms
exhibit a wide range of complexities. Early stage systems
were often based on keyword search or customized rules.
Later, supervised statistical machine learning algorithms
were applied extensively to computational phenotyping.
More recently, unsupervised learning has resulted in effec-
tive patient representation learning and discovery of novel
phenotypes. This section reviews NLP methods for EHR-
based computational phenotyping, starting with three
major categories: 1) keyword search or rule-based systems,

2) supervised learning systems, and 3) unsupervised sys-
tems. We then identify current trends and active directions
of development. For convenience, we summarize the charac-
teristics of studies reviewed in this section in Table 1. The
studies are characterized regarding themethods used to gen-
erate features, the methods or tools used for classifying the
assertions (e.g., negations) of the features, the named entity
recognition methods used to identify the concepts in the nar-
ratives, and the data sources used formodeling training.

3.1 Keyword Search and Rule-Based System
Keyword search is one of the algorithms with the least
model complexity for computational phenotyping. It looks
for keywords, derivations of those keywords, or a combina-
tion of keywords to extract phenotypes [75]. For example,
“pneumonia in the right lower lobe” is a derivation of the
key phrase “consolidation in the left lower lobe” in Fiszman
et al. [75]. These keywords correspond to medications, dis-
eases, or symptoms; and, in practice, they are often identi-
fied using regular expressions. In early work, large tables of
keywords were generated. Meystre et al. [76] manually built
a keyword table using 80 selected concepts with related sub-
concepts. They retrieved 6,928 phrases corresponding to the
80 concepts from the Unified Medical Language System
(UMLS) Metathesaurus MRCONSO table [77]. After filter-
ing, they still had 4,570 keywords remaining. Based on these
keywords for classification, they achieved a precision of 75
percent and a recall of 89 percent. Wagholikar et al. [78]
developed a keyword search system for limb abnormality
identification using free-text radiology reports. Even though
the reports have an average length of only 52 words, they
achieved an F-measure of 80 percent and an accuracy of 80
percent. Despite their success, problems caused by the
unstructured, noisy nature of the narrative text (e.g., gram-
matical ambiguity, synonyms, term abbreviation, misspell-
ing, or negation of concepts) remain bottlenecks in keyword
search. In general, keyword search is more susceptible to
low accuracy due to simplicity of features. To improve
model performance, supplementary rules (or other more
sophisticated criteria) have been added to keyword search.

Rule-based systems are among the most frequently used
computational phenotyping methods. In a review by Shivade
et al. [3], 24 out of 97 computational phenotyping related
articles have described rule-based systems. In a typical rule-
based system, criteria need to be pre-defined by domain
experts. For example, Wiley et al. [79] developed a rule-based
system for stain-induced myotoxicity detection. They manu-
ally annotated 300 individuals’ allergy listings and pre-
defined a set of keywords. Then they developed a set of rules
to detect contextual mentions around the keywords. In this
study, they achieved a positive predictive value (PPV) score
of 86 percent and a negative predictive value (NPV) score of
91 percent. Ware et al. [80] developed a list of concepts
together with a list of secondary concepts that appear in the
same sentence. The secondary concepts were mainly medica-
tions. After defining the concepts, they developed a set of
rules for phenotype identification. This framework achieved
an overall kappa score of 92 percent with the original annota-
tions. Nguyen et al. [40] implemented an NLP tool, called the
General Architecture for Text Engineering (GATE), to extract
UMLS concepts and mapped them to SNOMEDCT concepts.
These SNOMED CT concepts were utilized to predict the
stage of lung cancer using defined rules based on staging
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TABLE 1
Summarization and Characterization of Computational Phenotyping Systems

Study Assertion
Concept Extraction/Concept

Mapping Data Source Feature Generation

Aramaki et al. [96] NA Self-defined keywords Narrative Similarity score between
sentences

Bejan, Vanderwende, et al. [97] Section headers, self-defined
features, NegEx, and Con-
Tex

MetaMap Restricted set of time order
physician daily note

Uni-grams, bi-grams, UMLS
concepts, assertion values
associated with pneumonia
expressions, statistical sig-
nificance testing to rank fea-
tures

Carroll et al. [27] Modified form of NegEx in
KMCI, section header

KMCI, MedEx for medica-
tion

Clinical notes, ICD-9 ICD-9, medication name,
CUI, total note counts

Carroll et al. [35] HITEx, Customized NegEx
queries

HITEx Diagnosis, billing, medica-
tion, procedural codes, phy-
sician text notes, discharge
summaries, laboratory test
results, radiology report

21 defined attributes from
patients’ narrative

Chapman et al. [98] NA SymText X-ray reports Pneumonia-related related
concepts and its states from
SymText

Chase et al. [92] NA MedLEE Narrative 50 buckets representing
pools of synonymous UMLS
terms

Chen et al. [99] NA KMCI, SecTag, MedLEE,
MedEx

Narrative, ICD-9, CPT ICD-9, CPT, CUIs

Castro et al. [100] Context dependent token-
izer in cTAKES

cTAKES Radiology reports Concepts, context dependent
concepts, and concepts from
cTAKES

Davis et al. [30] Negation, word-sense dis-
ambiguation tool in KMCI

KMCI ICD-9 codes, free text, and
medications

ICD-9, CUIs, keywords

DeLisle et al. [101] Customized rules, NegEx Examined UMLS-supplied
lexical variants/semantic
types

Narrative, ICD-9, vital signs
and orders for tests, imag-
ing, and medications

186 UMLS associated with
phenotype

DeLisle et al. [102] NA cTAKES Chest imaging report ICD-9,
encounter information, pre-
scriptions

ICD-9, antibiotics medicine,
hospital re-admission,
binary variable of non-nega-
tive of chest imaging report

Fiszman et al. [75] Self-defined rules SymText Chest x-ray reports Set of augmented transition
network grammars and a
lexicon derived from the
specialist Lexicon

Garla et al. [103] cTAKES, YTEX, defined
rules

Use cTAKES and YTEX to
map concepts to UMLS and
customized dictionary

Narrative and customized
dictionary

Terms suggestive of benign/
malignant lesions and
UMLS concept in any liver-
cancer related sentence

Gehrmann et al. [104] cTAKES cTAKES Discharge summary Concepts from cTAKES
were transformed to contin-
uous features using the TF-
IDF

Haerian and Salmasian et al. [84] Manual, and MedLEE MedLEE map concepts to
UMLS

Discharge summaries, ICD-9 MedLEE concepts were
manually reviewed by a cli-
nician. 31 codes were used

Herskovic et al. [105] NA MetaMap, SemRep Narrative, biomedical litera-
ture

UMLS concept and UMLS
relationship, semantic predi-
cation from biomedical liter-
ature

Lehman et al. [106] NegEx map to customized UMLS
dictionary

Narrative Manually selected UMLS
concept

Li et al. [82] NA NA Narrative, medication, lab
results

Neonatologists manually
reviewed 11 patients’ notes
and defined keywords and
rules

Liao et al. [15] Occurrence of concepts to
indicate positive or negative
of a sentence

HITEx Provider notes, radiology
reports, pathology reports,
discharge summaries, opera-
tive reports, ICD-9, prescrip-
tions

Concepts from HITEx, count
of the concepts, binary vari-
able to indicate occurrence
of concepts.

Liao et al. [107] NA HITEx ICD-9, CPT, lab results, nar-
rative

Binary variable was created
to indicate whether a con-
cept was mentioned or not

Lin et al. [29] cTAKES cTAKES Narrative, medication code,
customized CUI

CUI, drug signatures (dos-
age, frequency), temporal
features, nearby words,
nearby POS tags

Luo et al. [108] NA Stanford Parser, Link Parser,
ClearParser

Narrative CUIs were used as nodes in
the graph, syntactic depen-
dencies among the concepts
were used as edges in the
graph
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guidance. They achieved accuracies of 72 percent, 78 percent,
and 94 percent for T, N, andM staging, respectively.

Xu et al. [34] implemented a heuristic rule-based
approach for colorectal cancer assertion. The system used
MedLEE [81] to detect colorectal cancer-related concepts. It
then applied defined rules to search for concept contexts.
The system achieved an F-measure of 99.6 percent for docu-
ment level concept identification. Li et al. [82] developed a
rule-based system to detect adverse drug events andmedical
errors using patients’ clinical narratives, medications, and

lab results. They compared the model’s performance to a
trigger tool [83], and they achieved 100 percent agreement.
The triggers in the trigger tool are a combination of keywords
that signal an underlying event of interest. Haerian et al. [84]
defined rules to extract concepts from discharge summaries
on top of the ICD-9 code. The use of concepts increased the
model’s PPV score from 55 percent to 97 percent. Sauer et al.
[85] developed a set of rules to identify bronchodilator
responsiveness from pulmonary function test reports, and
they achieved an F-measure of 98 percent.

TABLE 1
(Continued )

Study Assertion
Concept Extraction/Concept

Mapping Data Source Feature Generation

McCowan et al. [109] NegEx UMLS mapper Pathology report Map UMLS concepts to spe-
cific factors from the staging
guidelines

Nguyen et al. [40] NegEx, section heading MEDTEX Narrative Concepts related to lung
cancer resections (based on
the AJCC 6th edition) were
used

Ni et al. [54] NegEx cTAKES map to UMLS,
SNOMED CT

Encounter data and clinical
notes

Use concepts and encounter
data. Predefine concepts
from selection criteria,
search for the hyponyms of
query word

Nunes et al. [110] Manual NA Narrative, ICD-9, lab results,
demographics

Manual extract related terms
and hyponyms and related
words

Peissig et al. [111] MedLEE MedLEE Narrative, ICD-9, CPT UMLS concepts, ICD-9, CPT
Pineda et al. [112] ConText Topaz pipeline, map to

UMLS
Narrative, lab test Selected UMLS concepts and

two lab test concepts
Posada et al. [113] Section titles MedLEE, keyword extrac-

tion, Question-Answer Fea-
ture Extraction

Psychiatric evaluation
records

Count of keywords and con-
cepts fall in nine defined cat-
egories as feature

Roque et al. [114] NA Simple sentence splitter split
the text into smaller units

ICD-10, narrative ICD-10, small units of sen-
tences

Sauer et al. [85] NA Manual Narrative Experts reviewed notes and
collected patterns to design
extraction rules using regu-
lar expression

South et al. [115] Negex UMLS Metathesaurus Narrative NA
Teixeira et al. [116] NegEx MetaMap Narrative, document count,

medication, hypertension
lab test related structured
data

UMLS concepts, SNOMED-
CT generated from narra-
tive, ICD-9 code from struc-
tured data

Wang et al. [117] NA Standford parser Clinical notes, comments,
structured files

Constituent and dependency
parsed from sentence

Ware et al. [80] Self-Dev NA Narrative Medication, treatment, word
bigrams, numerical features,
synonym list

Wei et al. [118] cTAKES cTAKES, map to SNOMED-
CT

Narrative SNOMED-CT concept,
semantic type, node collapse
concept

Wilke et al. [36] NA FreePharma Narrative, ICD-9, laboratory
data

NA

Xu et al. [34] MedLEE MedLEE, map to UMLS CUI Narrative, ICD-9, CPT UMLS concept, words of
distance and direction (left
versus. right)

Yu et al. [28] NA NILE, map to UMLS concept ICD-9, Narrative ICD-9, NLP features (counts
of generic drug concept),
number of notes for each
patient

Zeng et al. [89] HITEx (NexEx-2) HITEx, map to UMLS Narrative, ICD-9 N-word text fragments
along with frequency, UMLS
concept, smoking related
sentences

Zhao et al. [119] Self-defined NA PubMed knowledge, ICD-9,
narrative

Selected concepts that are
associated with pancreatic
cancer

Abbreviations: CPT current procedural terminology; CUI concept unique identifier; cTAKES clinical text analysis and knowledge extraction system; ICD-9
international classification of diseases, ninth revision; NLP natural language processing; UMLS unified medical language system; TF-IDF term frequency-
inverse document frequency; HITEx health information text extraction; MedLEE medical language extraction and encoding system; KMCI knowledgeMap
concept indexer; NILE narrative information linear extraction.
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Rule-based systems often need many complex attribute-
specific rules, which may be too rigid to account for the
diversity of the language expression. As a result, rule-based
systems may exhibit have high precision, but low recall. In
fact, as will be detailed in the next subsections, more recent
systems opted to use statistical machine learning algorithms
to replace or complement rules.

Developing rules is laborious, time-consuming and req-
uires expert knowledge. Despite these disadvantages, rule-
based systems remain one of the most popular computational
phenotypingmethods in the field due to their straightforward
construction, easy implementation, and high accuracy [30].

3.2 Supervised Statistical Machine
Learning Algorithms

To improve upon accuracy and scalability while decreasing
domain expert involvement, statistical machine learning
methods have been adopted for computational phenotyping.
These methods usually have the advantage that in addition
to classifying phenotypes, they often provide the probability
or confidence of that classification. In general, statistical
machine learning methods are categorized as supervised,
semi-supervised, or unsupervised. Common to all methods,
each subject is represented as a vector consisting of features.
In supervised learning, each sample in a training dataset is
labeled. Algorithms predict the labels for an unknown or test
dataset after learning from the training dataset. In contrast,
unsupervised learning identifies patterns without labeling.
It automatically clusters samples with similar patterns into
groups. Semi-supervised algorithms reflect a middle ground
and are usedwhenwe have both labeled and unlabeled sam-
ples. Among the most widely used supervised learning
algorithms for computational phenotyping are logistic
regression, Bayesian networks, support vector machines
(SVMs), decision trees, and random forests. More introduc-
tory and detailed description of supervised and unsuper-
vised methods can be found in review papers such as
Kotsiantis et al. [86] and Love et al. [87].

Regression methods have a long history of application
for computational phenotyping [15], [28], [29]. Regression
models adjust their parameters to maximize the conditional
likelihood of the data. Further, regression models do not
require a lot of effort in building or tuning, and the feature
statistics derived from these regression models can be easily
interpreted for meaningful insights.

In a study of identification of methotrexate-induced liver
toxicity in patients with rheumatoid arthritis, Lin et al. [29]
collected Concept Unique Identifiers (CUIs), Methotrexate
(MTX) signatures, nearby words, and part-of-speech (POS)
tags as features for an L2-regularized logistic regression. They
obtained an F-measure of 83 percent in a performance evalua-
tion. Liao et al. [88] implemented adaptive least absolute
shrinkage and selection operator (LASSO) penalized logistic
regression as classification algorithm to predict patients’
probabilities of having Crohn’s disease and achieved a PPV
score of 98 percent. Both Lin’s and Liao’s methods experi-
mented with a combination of features from structured EHR
and NLP-processed features from clinical narratives. Their
studies showed that the inclusion of NLPmethods resulted in
significantly improved performance for regression models.
Due to the high dimensionality of features extracted fromnar-
ratives, bothmethods applied regularized regressions.

Both Naive Bayes and Bayesian network classifiers are
probabilistic classifiers [89] and work well with high-

dimensional features. Unlike Bayesian networks, Naive
Bayes doesn’t require the inference of a dependency network
and is more convenient in application when feature dimen-
sion is large. This is because Naive Bayes models assume that
features are independent of one another whereas Bayesian
networks allow for dependency among features. Besides their
simplicity, Naive Bayes models are particularly useful for
large datasets and are less prone to overfitting—sometimes
outperforming highly sophisticated classification methods
when sufficient data are available [90]. For example, Pakho-
mov et al. applied Naive Bayes to predict heart failure [91],
using coded data (e.g., ICD-9, SNOMED) and a “bag of
words” representation from clinical narratives as features.
They chose Naive Bayes for their predictive algorithm due to
its ability to process high-dimensional data. Their model
achieved a sensitivity of 82 percent and a specificity of
98 percent. Similarly, Chase et al. [92] applied Naive Bayes for
multiple sclerosis classifications and obtained anAUC score of
90 percent. Some studies have suggested that results obtained
from logistic regression and Naive Bayes are comparable [93].
Copmared to logistic regression, the Naive Bayes classifier is
capable of learning even in the presence of some missing
values and relies less onmissing data imputation [94], [95].

A Bayesian network consists of a directed acyclic graph
whose node set contains random variables and whose edges
represent relationships among the variables, and a condi-
tional probability distribution of each node given each com-
bination of values of its parents [120]. Bayesian networks
have been used for reasoning in the presence of uncertainty
and machine learning in many domains including biomedi-
cal informatics [121]. Chapman et al. [98] applied a Bayesian
network inference model to predict pancreatic cancer using
X-ray reports. In their experiments, a Bayesian network
demonstrated high sensitivity 90 percent and specificity of
78 percent. Zhao et al. [119] applied a similar approach to
identify pancreatic cancer. They developed a weighted
Bayesian network with weights assigned to each node (fea-
ture). They also incorporated external knowledge from
PubMed for scaling weights. Associations between each
risk factor and pancreatic cancer were established using the
output of NLP tools run on PubMed. Finally, they selected
20 risk factors as variables and fit them into a weighted
Bayesian network model for pancreatic cancer prediction.
Their results showed that this weighted Bayesian network
achieved an AUC score of 91 percent, which had better per-
formance than a traditional Bayesian network (81 percent).
Compared to logistic regression or Naive Bayes methods, as
a probabilistic formalism, Bayesian networks offer a better
capacity to integrate heterogeneous knowledge in a single
representation, which is particularly important in computa-
tional phenotyping because it complements the increasing
availability of heterogeneous data sources [119]. A priori
estimations can be taken into account in Bayesian network;
this advantage allows one to incorporate known domain
knowledge to increase model performances.

Clinical narratives are known to have high-dimensional
feature spaces, few irrelevant features, and sparse instance
vectors [122]. These problems were found to be well-
addressed by SVMs [122]. In addition, SVMs have been recog-
nized for their generalizability and are widely used for
computational phenotyping [27], [89], [97], [103], [109], [123],
[124]. In SVM models, a classifier is created by maximizing
the margin between positive and negative examples [125].
Wei et al. [118] applied Mayo clinical Text Analysis and
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Knowledge Extraction System (cTAKES) to extract SNOMED
CT concepts from clinical documents. The concepts were
used to train a SVM for Type 2 Diabetes identification. Their
algorithm achieved an F-measure of 95 percent. They con-
cluded that concepts from the semantic type of disease or syn-
drome contain most important information for accurate
phenotyping. Carroll et al. [27] implemented a SVM model
for rheumatoid arthritis identification using a set of features
from clinical narratives using the Knowledge Map Concept
Identifier (KMCI) [126]. They demonstrated that a SVM algo-
rithm trained on these features outperformed a deterministic
algorithm. Zeng et al. [89] trained a SVM model for principal
diagnosis, co-morbidity, and smoking status identification.
The features for the model were concepts extracted from dis-
charge summaries and ICD-9 codes. The model achieved
accuracies of 90 percent for smoking status, 87 percent for co-
morbidity, and 82 percent for principal diagnoses. Chen et al.
[99] applied active learning to a SVM classification algorithm
to identify rheumatoid, colorectal cancer, and venous throm-
boembolism. Their results showed that active learning with a
SVM could reduce annotated sample size while remaining
relatively high performance. In the reviewed papers, SVMs
constantly outperform other learning algorithms for compu-
tational phenotyping [27], [89], [99], [118], [127].

Kernel methods provide a structured way to extend the
use of a linear algorithm to data that are not linearly separable
by transforming the underlying feature space. The nonlinear
transformation enables it to operate on high-dimensional data
without explicitly computing the coordinates of the data in
that space. SVMs are themost well-known learning algorithm
using kernel based methods. Kotfila et al. [128] evaluated dif-
ferent SVM kernels’ performances in identifying five diseases
fromunstructuredmedical notes. They found that SVMswith
Gaussian radial basis function (RBF) kernels outperformed
linear kernels. Zheng et al. [129] found that a SVM with RBF
kernel exceeded non-kernel-based SVMs, decision trees, and
perceptron for coreference resolution identification from the
clinical narrative. In a study by Turner et al. [130], the authors
tried to identify Systemic Lupus Erythematosus (SLE) from
clinical notes. The authors concluded that a SVM with linear
kernel outperformed radial basis function, polynomial, and
sigmoid kernels. Good performance can be achieved in kernel
methods with the appliance of statistical learning theory or
Bayesian arguments. Linear methods are favored when there
are many samples in a high dimensional input space. In con-
trast, for low-dimensional problems with many training
instances, nonlinear kernel methods may be more favorable.
Apart from the models mentioned above, researchers have
explored other methods such as random forests [112], deci-
sion trees [100], [113], [131], [132], and the Longitudinal
Gamma Poisson Shrinker [133], [134] for computational phe-
notyping. DeLisle et al. [102] implemented a conditional ran-
dom field probabilistic classifier [135] to identify acute
respiratory infections. They used structured data combined
with narrative reports and demonstrated the inclusion of free
text improved the PPV score by 20–70 percent while retaining
sensitivities around 58-75 percent. Chapman et al. [98]
applied decision trees, Bayesian networks, and an expert-
crafted rule-based system to extract bacterial pneumonia
fromX-ray reports. Themethod using decision trees achieved
an AUC score of 94 percent, and it is close to the other sys-
tems. Furthermore, semi-supervised methods have also been
investigated for computational phenotyping [136], [137],
which have the potential to significantly reduce the amount of

labeling work and simultaneously retain high accuracy. Ara-
maki et al. [96] applied K-Nearest Neighbor classifier [138]
based on the Okapi-BM25 similarity measure to extract
patient smoking statuses from free text, and they achieved 89
percent accuracy in a performance evaluation. Carrero et al.
[139] applied AdaBoost with Naive Bayes for text classifica-
tion, and they achieved an F-measure of 72 percent using
bigrams. Ni et al. [54] used TF-IDF similarity scores calculated
from the feature vectors to identify a cohort of patients for
clinical trial eligibility prescreening. Hybrid methods make
use of more than one methods have also received increasing
attention [138], [139], suggesting a promising direction for
practical performance improvement.

For many data resources and domains, various models
have been investigated, and some of them have achieved
impressive success. However, a comprehensive understand-
ing of the superior performance of a particular method over
another for a specific domain remains an open challenge.

3.3 Unsupervised Learning
The time-consuming and labor-intensive process of obtaining
labels for supervised learning algorithms limits their applica-
bility to computational phenotyping. Another limitation of
supervised learning is that it only looks for known character-
istic patterns by designating a task and its outcome [86].
Unsupervised learning, on the other hand, can automatically
classify phenotypes without extra annotations by experts
[105], [140], [141]. Moreover, unsupervised learning searches
for intrinsic patterns of data. Luo et al. [142] introduced sub-
graph augmented non-negative tensor factorization (SANTF)
to cluster patients with lymphomas into three subtypes. After
extracting atomic features (i.e., words) from narrative text,
they implemented SANTF to mine relation features to cluster
patients automatically. Their study demonstrated that NLP
methods for unsupervised learning were able to achieve a
decent accuracy (75 percent) and at the same time to discover
latent subgroups. Roque et al. [114] extracted concepts from
free text and mapped them to ICD-10 code. The ICD-10 code
vector was used to represent each patient’s profile and cosine
similarity scores between each pair of ICD-10 vectors were
obtained. Then, they applied hierarchical clustering to cluster
those patients based on cosine similarity scores. As a result,
they identified 26 clusters within 2,584 patients. They further
analyzed the clinical characteristics of each cluster and con-
cluded that NLP-based unsupervised learning was able to
uncover the latent pattern of patient cohorts. Ho et al. [143]
applied sparse non-negative tensor factorization on counts of
normal and abnormal measurements obtained from EHR
data for phenotype discovery. They identified multiple
interpretable and concise phenotypes from a diverse EHR
population, concluding that their methods were capable of
characterizing and predicting a large number of diseases
without supervision. Quan et al. [144] applied kernel-based
pattern clustering and sentence parsing for interaction identi-
fication fromnarratives. In their application of protein-protein
interaction, the unsupervised system achieved close perfor-
mance to supervisedmethods.

Unsupervised learning has mitigated the laborious label-
ing work, thus making studies more scalable, and has the
capability of finding novel phenotypes. However, interpre-
tation of these new phenotypes requires domain expertise
and remains challenging. Additionally, model performance
in unsupervised learning is not yet as good as supervised
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learning. EHR-based unsupervised learning has frequently
been applied on structured data [44], [45], but less fre-
quently on narratives [142]. Further investigations on incor-
porating multiple data sources and at the same time
maintaining or improving the performance are expected.

3.4 Deep Learning
Deep learning algorithms are good at finding intricate struc-
tures in high-dimensional data and have demonstrated good
performance in natural language [145]. They have been
adapted to learn vector representations of words for NLP-
based phenotyping [112], [136], laying a foundation for
computational phenotyping. Deep learning has been applied
on various NLP applications, including semantic representa-
tion [146], semantic analysis [147], [148], information retrieval
[149], [150], entity recognition [151], [152], relation extraction
[153], [154], [155], [156], and event detection [157], [158].

Beaulieu-Jones et al. [136] developed a neural network
approach to construct phenotypes to classify patient disease
status. The model obtained better performance than SVM,
random forest, and decision treemodels. They also claimed to
successfully learn the structure of high-dimensional EHR
data for phenotype stratification. Gehrmann et al. [104] com-
pared convolutional neural networks (CNNs) to the tradi-
tional rule-based entity extraction systems using the cTAKES
and logistic regression using n-gram features. They tested ten
different phenotyping tasks using discharge summaries. The
CNNs outperformed other phenotyping algorithms in the
prediction of ten phenotypes, and they concluded that NLP-
based deep learning methods improved the performance of
patient phenotyping compared to other methods. Wu et al.
[159] applied CNNs using a set of pre-trained embeddings on
clinical text for named entity recognization. They found that
their models outperformed the baseline of conditional ran-
dom fields (CRF). Geraci et al. [160] applied deep neural net-
works to identify youth depression from unstructured text
notes. The authors achieved a sensitivity of 93.5 percent and a
specificity of 68 percent. Jagannatha et al. [161], [162] experi-
mented with recurrent neural networks (RNNs), long short-
term memory (LSTM), gated recurrent units (GRUs), bidirec-
tional LSTMs, combinations of LSTMs with CRF, and CRF to
extract clinical concepts from texts. They found that all var-
iants of RNNs outperformed the CRF baseline. Lipton et al.
[163] evaluated the performance of LSTM in phenotype pre-
diction using multivariate time series clinical measurements.
They concluded that their model outperformed logistic
regression and multi-layer perceptron (MLP). They also con-
cluded that the combination of LSTM and MLP had the best
performance. Che et al. [164] also applied deep learningmeth-
ods to study time series in ICU data. They introduced a prior-
based Laplacian regularization process on the sigmoid layer
that is based on medical ontologies and other structured
knowledge. In addition, they developed an incremental train-
ing procedure to iteratively add neurons to the hidden layer.
Then they applied causal inference techniques to analyze and
interpret the hidden layer representations. They demon-
strated that their proposed methods improved the perfor-
mance of phenotype identification and that the model trains
with faster convergence and better interpretation.

It is commonly known that unsupervised pre-training can
improve deep learning performances and generalizability
[165]. A generative deep learning algorithm that uses unsu-
pervised methods can be applied to large unlabeled datasets,

which has the potential to increases model generalizability
[166]. Miotto et al. [167] applied a deep learning model called
an auto-encoder as an unsupervised model to learn the latent
representations for patients in order to predict their outcome
and achieved better performance than principal component
analysis. Due to the excellent model performance and good
generalizability [168], using deep learning methods in con-
junction with unsupervised methods is a promising approach
in NLP-based computational phenotyping. Miotto et al. [169]
introduced the framework of “deep patient”. Themethod cap-
tures hierarchical regularities and dependencies in the data to
create a vector for patient representation. This study showed
that pre-processing data using a deep sequence of non-linear
transformations can help better information embedding and
information inference. Word2Vec [170] is an unsupervised
artificial neural network (ANN) that has been developed to
obtain vector representations of words when given large cor-
pus and the representations are dependent on the context. For
more details, we refer readers to a review [16] in recent advan-
ces on deep learning techniques for EHR analysis.

Even though deep learning methods present an opportu-
nity to build phenotyping systems with good generalizabil-
ity [171], a drawback of deep learning methods is their lack
of interpretability. It can be difficult to understand how the
features of the model arrive at predictions even though they
can train a classifier with good performance [172].

4 MAKING NLP MORE EFFECTIVE

With numerous NLP methods available for computational
phenotyping, it is practical to consider how to select more
effective NLP methods or improve current NLP methods
based on problem characteristics. This section reviews exist-
ing effort in these directions including model comparison,
multi-modality data integration, entity recognition, and fea-
ture relation extractions.

4.1 Comparison of Models
Different computational phenotyping models vary in pre-
diction accuracy and model generalizability. Comparison
studies have been carried out to explore model performan-
ces. These comparison studies indicate algorithm perfor-
mance differs based on specific conditions such as data
sources, features, training data sizes, and target phenotypes.

In 1999,Wilcox et al. [173] conducted a study to investigate
different algorithms’ performances to extract clinical condi-
tions from narratives. These algorithms were Naive Bayes,
decision table, instance-based inducer, decision tree inducer
MC4, decision tree inducer C5.0, and rule-discovery inducer
CN2. Outputs of NLP algorithms were used as model fea-
tures. They found MC4 and CN2 had the best performances
while decision table performed the worst. Chapman et al. [98]
tested rule-based method, Bayesian network, and decision
tree for pneumonia detection using X-ray reports. The study
showed that rule-based methods had slightly better perfor-
mance (AUC score: 96 percent) than decision tree systems
(AUC score: 94 percent) and Bayesian networks (AUC score:
95 percent).

Teixeira et al. [116] found random forests were superior to
rule-based systems with a median AUC score of 98 percent
when they were trying to identify hypertension using billing
codes, medications, vitals, and concepts extracted from narra-
tives. Pineda et al. [112] compared a Bayesian network classi-
fier, Naive Bayes, a Bayesian network with the K2 algorithm,
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logistic regression, neural network, SVM, decision tree, and
random forest for influenza detection. They concluded that
all the machine learning classifiers had good performance
with AUC score ranging from 88 percent to 93 percent and
outperformed curated Bayesian network classifier, which had
anAUC score of 80 percent.

Dumais et al. [132] compared the performances of SVM,
Naive Bayes, Bayesian networks, decision trees, and rule-
based systems in text classification. They concluded SVMs
showed the best performance and noted that the training
process is fast. Chen et al. [99] applied active learning to
SVM classification, and their results showed that active
learning with a SVM could reduce sample size needed.
They concluded that semi-supervised learning, such as
active learning, is efficient insofar as it reduces labeling cost.

Gehrmann et al. [104] compared convolutional neural net-
works (CNNs) to logistic regression and random forest
model. They found CNNs had an improved performance
compared to others and it can automatically learn the phrases
associatedwith each patient phenotype,which reduced anno-
tation complexity for clinical domain experts.

Among the compared methods, keyword search and
rule-based systems often achieve good performance when
such systems are well-designed and well-tuned. However,
the construction of a keyword and rule list is laborious,
making these systems difficult to scale. Supervised machine
learning models have been favored for their capabilities of
acquiring classification patterns and structures from data.
The performance of supervised methods varies depending
on the sample size, data resource type, number of data
resources. Deep learning has also been favored for its better
performance and generalizability. It has also been suggested
that inclusion of more data resources can improve the
model performances [174].

4.2 Combining Multiple Data Modalities
Computational phenotyping often involves multiple hetero-
geneous data sources in addition to structured data, such as
clinical narratives, public databases, social media, biomedi-
cal literature [15], [88], [101], [111], [115], [175], [176]. Adding
heterogeneous data has the benefit of providing complemen-
tary perspectives for computational phenotyping models
[117]. Teixeira et al. [116] tested different combinations of
ICD-9 codes, medications, vitals, and narrative documents
as data resources for hypertension prediction. They found
that model performance increases with the number of data
resources regardless of the method used. They concluded
that combination of multiple categories of information result
in the best performances. The complete list of data sources
utilized in the reviewed literature appears in Table 1.

Liao et al. [15], [107] compared algorithms using ICD-9
codes alone to algorithms using a combination of structured
data and NLP features. The results showed that the incorpo-
ration of NLP features improved algorithm performance sig-
nificantly. Similarly, Nunes et al. [110] concluded that both
structured data and clinical notes need to be considered to
assess the occurrence of hypoglycemia among diabetes
patients fully. Yu et al. [28] collected concepts from publicly
available knowledge sources (e.g., Medscape, Wikipedia) and
combined them with concepts extracted from narratives to
predict rheumatoid arthritis (RA) and coronary artery (CAD)
disease status. Their results showed that the combination of
available public databases like Wikipedia and features

derived from narratives could achieve high accuracy in RA
and CAD prediction. Xu et al. [34] used ICD-9 codes, Current
Procedural Terminology (CPT) codes, and colorectal cancer
concepts to identify colorectal cancer. Zhao et al. [119] applied
additional PubMed knowledge toweight the existing features.

The increasing trend of combining multiple data sources
reflects the increased availability of EHR data and publicly
available data [26]. Also, coupled with the increasing model
complexities, there is a potential that more comprehensive
data sources will be included for computational phenotyp-
ing. For example, one application developed by Gehrmann
et al. [104] used CNNs to automatically learn the phrases
associated with patients’ phenotypes without task-specific
rules or pre-defined keywords, which reduced the annota-
tion effort for domain experts. As such, various data sources
can be adopted for model training without too much human
labor. However, regarding model generalizability, models
and features based on narratives do not appear to be as por-
table as the ones based on structured EHR fields [116].

4.3 Entity Recognition and Relation Extraction
It is important to accurately recognize entities in clinical narra-
tives as the extracted concepts are often used as features for
models. Methods for feature learning vary from early-on
manual selection to, more recently, machine learning meth-
ods. State-of-the-art named entity recognizers can automati-
cally annotate text with high accuracy [177]. Bejan et al. [97],
[123] implemented statistical feature selection, such as logis-
tic regression with backward elimination to reduce feature
dimensions. Wilcox et al. [173] tested machine learning algo-
rithms with both expert-selected variables and automati-
cally-selected variables by identifying top ranking predictive
accuracy variables to classify six different diseases. Several
studies, including those of Lehman et al., Luo et al., and
Ghassemi et al. [106], [142], [178], [179], applied topic models
and extended tensor-based topic models to learn better
coherent features. Chen et al. [180] have applied an unsuper-
vised system that is based on phrase chunking and distor-
tional semantics to find features that are important to
individual patients. Zhang et al. [181] have applied an unsu-
pervised approach to extract named entities from biomedical
text. Their model is a stepwise method, detecting entity
boundaries and also classifying entities without pre-defined
rules or annotated data. To do this, they assume that entities
of same class tend to have similar vocabulary and context,
which is called distributional semantics. Their model
achieves a stable and competitive performance.

In addition to features, it is also critical to capture relations
among features. Understanding these relations is important
for knowledge representation and inference to augment struc-
tured knowledge bases [182], [183]. To date, a majority of the
state-of-the-art methods for relation extraction are graph-
based. Xu et al. [184] developed medication information
extraction system (MedEx) to extract medications and rela-
tions between them. They applied the Kay Chart Parser [185]
to parse sentences according to a self-defined grammar. In
this way, they converted narratives to conceptual graph rep-
resentations of medication relations. Using this graph repre-
sentation, they were able to extract the association strength,
frequencies, and routes. Representing medical concepts with
graph nodes, Luo et al. [108] augmented the Stanford Parser
with UMLS-based concept recognition to generate graph rep-
resentations for sentences in pathology reports. They then
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applied frequent subgraph mining to collect important
semantic relations betweenmedical concepts.

The integration of named entity detection with relation
extraction will produce end-to-end systems that can further
automate the discovery and curation of novel biomedical
knowledge. In addition, there is a trend towards increasingly
unsupervised relation extraction, which is more adaptable
across biomedical subdomains. Unsupervised methods have
been investigated for feature relations too. Ciaramita et al.
[186] presented an unsupervised model to learn semantic
relations from text, hypothesizing that semantically related
words co-occurmore frequently. The model represented rela-
tions as syntactic dependency paths between ordered pairs of
named entities. Relations were selected using the similarity
scores associated with each class pair and dependency paths.
Most recently, Alicante et al. [187] proposed using unsuper-
vised methods for both entity and relation extraction from
clinical notes. Clustering was applied to all the entity pairs for
possible relations discovery.

5 FUTURE WORK

While notable progress has been made in computational phe-
notyping, challenges remain in developing generalizable,
efficient, and effectivemodels for accurate phenotype identifi-
cation. Below we discuss these challenges and directions for
futurework.

5.1 Information Heterogeneity in Clinical Narratives
Boland et al. [188] highlighted the heterogeneity apparent in
clinical narratives due to the variance in physicians’ expertise
and behaviors. Different clinicians’ perspectives can be quite
different, and in practice they often are. Also, clinical narra-
tives are often ungrammatical, incomplete with limited
context, and contain a large number of abbreviations and
acronyms [189], all of which make computational phenotyp-
ing challenging. Studies have applied UMLS or other external
controlled vocabularies to recognize the various expressions
of the samemedical concept. However, performances of those
external modules remain controversial [190], [191]. How to
resolve the heterogeneity in clinical narratives remains an
interesting topic.

5.2 Model Generalizability
There is an ongoing trend of expanding generalizable algo-
rithms to mine multiple diseases from different narratives.
But these methods are still lacking in computational pheno-
typing [192], [193]. In addition, rule-based systems are one of
the most prevalent methods for NLP-based computational
phenotyping [3]. The intensive human labor required to adapt
rules to a new system affects the model generalizability.
Studies investigating algorithms that automatically mine
rules are not yet available. Furthermore, even though statisti-
cal analysis and machine learning have provided alternative
ways to automatically generate phenotypes, high dimen-
sional feature spaces, data sparsity, and data imbalance
remain impediments to the adoption of these methods [194].
Development of complete pipelines using various data sour-
ces for different phenotypes is one potential solution for gen-
eralizable computational phenotyping.

5.3 Model Interpretability
More sophisticated models, such as convolutional neural
networks, have the potential to automatically learn the

phrases associated with each phenotype, which can reduce
annotation complexity for clinical domain experts [104].
Using such models, one might be able to develop a system
with good generalizability and have the availability to use
multiple data sources. However, these same models tend to
lack interpretability, which presents a problem that remains
to be solved. Furthermore, meaningful interpretations of the
novel phenotypes discovered in unsupervised clustering
models remain one of the next big challenges in the field.
Another promising direction is improving interpretation
while retaining, or even improving, performance.

5.4 Characterizing the Context of
Computational Phenotyping

Clinical narratives contain patients’ concerns, clinicians’
assumptions, and patients’ past medical histories. Clinicians
also record diagnoses that are ruled out or symptoms that
patients denied. Conditions, mentions, and feature relations
can be extracted to better distinguish differential diagnoses.
In computation phenotyping, generalized relation and
event extraction, rather than binary relation classification,
are expected to be a promising direction for future research;
especially for the tasks of extracting clinical trial eligibility
criteria [195], representing test results for automating diag-
nosis categorization [108], and building pharmacogenomic
semantic networks [58], where the number of nodes is flexi-
ble, and the relation structure may not be entirely pre-speci-
fied due to the high complexity. To this end, graph methods
are a promising class of algorithms and should be actively
investigated [108], [142].

6 CONCLUSION

In this paper, we review the applications of NLP methods
for EHR-based computational phenotyping, including the
state-of-the-art NLP algorithms for this task. Our review
shows that the keyword search, rule-based methods, and
supervised machine learning-based NLP are the most
widely used methods in the field. Well-designed keyword
search and rule-based systems often show high accuracy.
However, manually constructing keyword lists and rules
results in problematically low generalizability and scalabil-
ity for those methods.

Supervised classification has higher accuracy and is easy
to train and test. However, the supervised classification
methods require the training samples to be labeled, which
can be labor intensive. To date, there is not a dominating
method in the field; rather, model performances for the
same type of methods may even vary depending on the
data sources, data types, and sample sizes.

The combination of different data sources has the poten-
tial to improve model performance. Recently, unsupervised
machine learning algorithms are gaining more attention
because they require less human annotation and hold
potential for finding novel phenotypes. Furthermore, new
developments in machine learning methods, such as deep
learning, have been increasingly adopted.

Finally, there is an emerging trend to extract relations
between medical concepts as more expressive and powerful
features. The extracted relations have been shown to
increase algorithm performance significantly.

Despite these advances across multiple frontiers, there are
many remaining challenges and opportunities for NLP-based
computational phenotyping. These challenges include better
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model interpretability and generalizability, as well as proper
characterization of feature relations in clinical narratives.
These challenges will continuously shape the emerging land-
scape and provide research opportunities for NLP methods
in EHR-based computational phenotyping.
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