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Purpose: Selective progesterone receptor modulators (SPRMs)
show preclinical activity against hormone-sensitive breast cancer,
but have not been tested in patients with early, treatment-naive
tumors.

Patients and Methods: In a double-blind presurgical window
trial of oral telapristone acetate (TPA) 12 mg daily versus placebo,
70 patients with early-stage breast cancer were randomized 1:1
(stratified by menopause) and treated for 2 to 10 weeks. The primary
endpoint was change in Ki67 between diagnostic biopsy and
surgical specimens. Gene expression pre- and posttherapy was
assessed using RNA-sequencing and gene set enrichment analysis
was performed to determine pathways enriched in response to TPA
and placebo treatments.

Results: Among 61 evaluable women (29 placebo and 32
telapristone acetate), 91% of tumors were ER/PR positive. The
mean Ki67 declined by 5.5% in all women treated with telapris-

Introduction

Despite significant improvements in hormonal therapy for patients
with estrogen and progesterone receptor (ER and PR) positive breast
cancer, the risk of long-term relapse remains significant (1). In
particular, therapeutic interventions for premenopausal women
remain limited to ER-targeting drugs, with the recent addition of
inhibitors of cyclin-dependent kinases in the metastatic setting (2).
Limited progress has been made in exploiting PR for the treatment and
prevention of this disease. Activated PR is a context-dependent
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tone acetate (P = 0.003), and by 4.2% in all women treated with
placebo (P = 0.04). After menopausal stratification, the Ki67
decline remained significant in 22 telapristone acetate-treated
premenopausal women (P = 0.03). Differential gene expression
analysis showed no significant modulation overall. However, in a
subset of tumors that demonstrated >30% relative reduction in
Ki67 in the telapristone acetate group, genes related to cell-cycle
progression, and those in the HER2 amplicon were significantly
downregulated. In contrast, no significantly enriched pathways
were identified in the placebo group.

Conclusions: Patients treated with telapristone acetate whose
Ki67 decreased by >30% demonstrated a selective antiprolifera-
tive signal, with a potentially important effect on HER2 amplicon
genes. Evaluation of SPRMs in a neoadjuvant trial is merited,
with attention to predictors of response to SPRM therapy, and
inclusion of pre- and postmenopausal women.

mitogen in these cancers and it is known that PR independently
governs estrogen action and breast cancer biology (3-5). We and
others have previously reported that selective progesterone receptor
modulators (SPRMs) inhibit proliferation of PR-positive breast cancer
cell lines and suppress rodent mammary tumor formation in a
progestin-rich environment (6-10). In addition, mifepristone
(RU486) reduces proliferation in normal breast tissue (11), and
progestin exposure contributes to higher breast cancer risk in post-
menopausal women (12). This evidence motivates investigation of
antiprogestin therapies for breast cancer treatment and prevention (3).
Preclinical data suggest that second-generation SPRMs such as
ulipristal acetate and telapristone acetate are superior to mifepris-
tone, with more selective anti-PR activity, greater inhibition of cell
growth in T47D cells, and growth suppression of established ER-
positive mammary tumors in rats (8, 10). These drugs display
significantly less glucocorticoid receptor-antagonist activity than
mifepristone (13). Ulipristal acetate is approved for treatment of
uterine fibroids in the European Union, although liver enzyme
abnormalities have generated some caution (14-16). Telapristone
acetate is a 21-substituted analogue of 19-norprogesterone, which
has been investigated for therapy of uterine fibroids and endome-
triosis in the United States.

Although clinical trials evaluating PR antagonists in advanced
cancer settings have reported limited success (17-19), significant
differences exist in PR signaling in early-stage versus late-stage breast
cancers (20). No clinical studies have tested PR antagonism in early
stages of breast tumorigenesis, especially in treatment-naive patient
populations. These gaps in knowledge contribute to suboptimal
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Translational Relevance

Progesterone receptor (PR) antagonists have not been tested in
patients with early-stage breast cancer; recent data support the
rationale for such testing. We show, in a randomized placebo-
controlled presurgical window trial with 61 evaluable women, that
telapristone acetate produces a clear antiproliferative signal, par-
ticularly in premenopausal patients. Gene expression analyses
show selective suppression of proliferation-related gene pathways,
as well as genes in the HER2 amplicon, in the telapristone acetate
arm. These findings support the formal testing of selective PR
modulators in early-stage breast cancer, and for breast cancer
prevention. They offer the important possibility of a new mode
of endocrine therapy in premenopausal women; and point to the
need to identify biomarkers predictive of therapeutic success.

exploitation of PR-targeting agents for prevention and treatment of
early-stage breast cancers. For these reasons, we conducted a random-
ized, placebo-controlled window-of-opportunity clinical trial to inves-
tigate effects of 12 mg/day telapristone acetate treatment in women
newly diagnosed with stage I-II breast cancer.

Patients and Methods

Study design and procedures

Pre- and postmenopausal women presenting to the Lynn Sage
Breast Center of Northwestern Medicine with a stage I-II primary
breast cancer diagnosis were recruited under a protocol approved by
the Northwestern University Institutional Review Board, and the FDA
(NU12B09, NCT01800422). Randomization was stratified by meno-
pausal status (two-thirds premenopausal), anticipating that the drug
may be more effective in a progesterone-rich environment. Initially, we
allowed inclusion of women with hormone receptor (HR)-negative
tumors, but restricted this to patients with HR-positive disease early in
the course of the study. Eligibility criteria included a diagnostic core
needle biopsy (DCNB) containing an aggregate tumor deposit of >5
mm; ECOG performance status of <2, and liver and kidney function
tests that were within 1.5-fold of normal values (with exceptions for
Gilbert syndrome). A negative pregnancy test was required for women
with child-bearing capacity, <5 days prior to study drug initiation.
Participants were asked to refrain from supplements containing
natural estrogens. Telapristone acetate (12 mg) and placebo capsules
were supplied by Repros Therapeutics, Inc. Consented women were
randomized 1:1 to telapristone acetate or placebo, with a treatment
duration of 2 to 10 weeks, culminating in surgery. All participants
completed the Breast Cancer Prevention Trial Eight Symptom Scale
(BESS) questionnaire (21) at study entry and at the end of therapy.
Compliance was assessed through participant diaries and counts of
returned pills. Participants who took at least 80% of the prescribed dose
were considered compliant. Participants were also questioned about
adverse events, which were coded using the NCI Common Termi-
nology Criteria for Adverse Events version 3.0.

Grossly normal tissue and tumor, if available, were collected from
the surgical sample, snap frozen, and stored at —80°C for measure-
ment of drug concentration. The paraffin block of the DCNB and
surgical excision samples were sectioned in batches (with pre- and
posttreatment samples in the same batch) at the NU Pathology Core
Facility. Ten sections from each specimen were submitted to the
Research Histology and Tissue Imaging Core at the University of
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Illinois at Chicago (Chicago, IL). The sections were shipped cold and
processed for IHC within 4 weeks.

Study endpoints

The primary efficacy endpoint of this study was to demonstrate that
daily oral administration of telapristone acetate results in a 50%
reduction in the Ki67 labeling index (LI) of tumor cells, comparing
the DCNB to the matching lesion in the surgical excision. Secondary
endpoints were (i) to compare concentrations of telapristone acetate
and its active monodemethylated metabolite (CDB-4453) in normal
tissue, tumor, and plasma obtained on the day of surgery; (ii) to assess
changes in circulating ovarian hormone concentrations (173-estradiol
and progesterone) and follicle-stimulating hormone (FSH) induced by
drug intervention; and (iii) to evaluate quality-of-life endpoints using
the BESS questionnaire (21).

Laboratory methods

THC assessment of Ki67 was performed on formalin-fixed paraffin-
embedded (FFPE) sections of the DCNB and excision specimens, using
a dual IHC staining method (pancytokeratin and Ki67) and Definiens
Tissue Studio software for digital scoring as described in the Supple-
mentary Materials and Methods. Samples were processed in a blinded
batch fashion, with pre- and postintervention samples in the same
batch, along with positive and negative controls. Manual, blinded
scoring of 10 randomly selected sections performed by the study
pathologist (M.E. Sullivan) yielded a correlation of 0.78 (P = 0.01).
An independent reanalysis of Ki67 using the HALO software (with
resetting all optimization parameters in the algorithms) produced a
correlation coefficient of 0.95 with the Tissue Studio results. RNA was
isolated from FFPE sections and sequenced as described in the
Supplementary Materials and Methods. Sequencing was performed
at the Center for Medical Genomics at Indiana University. Analysis of
differential gene expression was performed with service from Artificial
Intelligence Inc. A set of 47 differentially expressed target genes and
three housekeeping genes was selected to confirm RNA-sequencing
(RNA-seq) results by nCounter gene expression assay (NanoString,
Inc.). Assay input comprised 100 ng of RNA; data normalization
and analysis was performed using nSolver Analysis Software
according to the company's user manual. Plasma and breast tissue
concentration measurement of telapristone acetate (CDB-4124)
and its active monodemethylated metabolite (CDB-4453) were
determined using LC/MS-MS as described in the Supplementary
Materials and Methods. Serum concentrations of estradiol, proges-
terone, and FSH were measured using a validated protocol at
Ligand Assay and Analysis Core Laboratory, University of Virginia
(Charlottesville, VA). Estradiol assay were done with ELISA Kit
(catalog No. ES180S; Calbiotech Inc.). Progesterone and FSH assays
were performed with Immulite Technology (catalog Nos. L2ZKPW2
and L2KFS2; Siemens Corp.). Each hormone assay was performed
in duplicate for each sample.

Statistical design and analysis

The study was powered to detect a relative 50% decline in Ki67 index
from baseline to posttherapy in the telapristone acetate arm, with no
significant change in the placebo arm. We assumed that Ki67 at
baseline would be 20%, and the correlation between the baseline and
postintervention values in the placebo group would be 0.5, with a SD of
10%. The significance of changes from baseline to posttreatment
within groups was evaluated with the paired signed-rank test. Cate-
gorized demographic variables were compared between arms via the
Fisher exact test. For RNA-seq differential gene expression analysis,
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Figure 1.

CONSORT diagram showing participant flow. Of 75 women assessed for
eligibility, 71 were consented and 70 were randomized 1:1 to placebo or
telapristone acetate (TPA) treatment. Women who did not meet 80% compli-
ance based on the returned-pill counts and patient diary or women whose
surgery rescheduled for logistical reasons were excluded from the analysis (*).
Because of drug dispensing error during the study, we confirmed treatment
group for each woman by detecting drug in plasma samples. The reassignment
was based on plasma drug concentration measurement. One subject was
reassigned from the placebo to the telapristone acetate group due to a
pharmacy dispensing error (o). The final study sample consisted of 29 placebo
and 32 telapristone acetate-treated women.

P values were calculated by Wald test and adjusted for multiple
comparisons by Benjamini-Hochberg method (twofold gene expres-
sion cutoff and P,g4j < 0.05). For differential gene expression analysis
by nSolver software, the significance of changes between baseline
and posttreatment within groups were evaluated with paired t test
and adjusted for multiple comparisons by Benjamini-Yekutieli
method (22). The 33 symptoms in the BESS questionnaire were
divided into eight clusters as described by Cella and colleagues (21).
The mean score within each cluster was used to evaluate significance
of changes from baseline to posttreatment within groups as well as
the differences between treatment groups using the Wilcoxon signed-
rank test.

Statement of ethics

All research was conducted in accordance with the Declaration of
Helsinki and with full approval from Northwestern University's
Institutional Review Board Office. Informed written consent was
obtained from each subject included in this research.

Results

Of 75 women assessed for eligibility, 70 were randomized 1:1 to
placebo or telapristone acetate treatment and 64 women completed the
study with 80% compliance (Fig. 1). However, the NU research
pharmacy reported drug dispensing errors during the study so that
one subject assigned to the placebo arm was given active drug. The
study statistician used plasma drug concentration values to reassign
the participant to the telapristone acetate group. This reassignment
was performed well before the unblinding of endpoint data. The final
study sample consisted of 29 placebo and 32 telapristone acetate-
treated participants (Fig. 1). Baseline participant and tumor charac-
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Table 1. Participant characteristics at baseline and the duration of
treatments according to treatment groups.

Placebo TPA
(N = 29) (N =32) P
Age at diagnosis, y® 50.2 + 8.9 499 £ 1.2 0.86
Menopausal status
Pre 19 (66%) 22 (69%) 0.99
Post 10 (34%) 10 (31%)
Race
Caucasian 20 (69%) 26 (81%) 0.37
Non-Caucasian 9 (31%) 6 (19%)
Tumor grade at surgery
1 8 (28%) N (34%) 0.80
2 14 (48%) 13 (41%)
3 7 (24%) 8 (25%)
Tumor size at surgery (cm)? 2.04 +£1.12 272 +176 0.23
ER status
Negative (<1%) 1(3%) 1(3%) 0.99
Positive 28 (97%) 31(97%)
PR status
Negative (<1%) 3 (10%) 3 (9%) 0.99
Positive 26 (90%) 29 (91%)
HER-2/neu status
Negative/equivocal 25 (86%) 27 (84%) 0.99
Positive 2 (7%) 2 (7%)
unknown 2 (7%) 3 (9%)
%Ki67 LI°
Low (<10%) 7 (24%) 9 (28%) 0.40
Intermediate (11%-20%) 6 (21%) 2 (6%)
High (>20%) 9 (31%) 9 (28%)
Unknown 7 (24%) 12 (38%)
Surgery type
Breast conservation 19 (66%) 17 (53%) 0.44
Mastectomy 10 (34%) 15 (47%)
Dosing d® 254 +£10.2 257 4+99
12-21d N (38%) 13 (41%) 0.99
>21d 18 (62%) 19 (59%)

2Values are reported as mean with SD. These data are extracted from the clinical
pathology reports, and do not represent the research Ki67 values, which were
batch-measured at the end of the study and were used for the primary endpoint
analysis, shown in Table 2. The unknown values are largely on patients diag-
nosed at outside institutions, where Ki67 analysis was not routinely done on core
needle biopsies.

teristics were balanced (Table 1); 97% of tumors were ER or PR
positive and 91% were ER and PR positive.

Primary endpoint, Ki67 changes from baseline to posttreatment

We compared lesion-matched DCNB and excision samples from all
61 compliant participants. Our prespecified endpoint of a relative 50%
reduction in the Ki67 index in the telapristone acetate arm was
achieved in eight women treated with telapristone acetate, but was
also seen in five women treated with placebo. The mean postinterven-
tion Ki67 LI decreased significantly from baseline in both groups
(mean reduction of 5.5% in telapristone acetate group, P = 0.003 and
mean reduction of 4.2% in the placebo group, P = 0.04; see Table 2
and Fig. 2A). We explored the staining intensity for Ki67 (H-score),
because this avoids selecting a single threshold for cell positivity and
can reduce the contribution of weakly stained cells (potential false
positives). There was a larger mean H-score reduction in the telapris-
tone acetate group (—14, P = 0.003) than in the placebo group (—10,
P = 0.06). Our randomization scheme was stratified 2:1 for pre- and
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Table 2. Measurement of Ki67 changes according to the
treatment groups.

Placebo (N = 29)
Mean - SD P?

TPA (N = 32)
Mean - SD P?

%Ki67 LI

Baseline 22 +18 19+

Posttreatment 18 +14 14 +8

Changes from baseline —4.2 + 10 0.04 -55+96 0.003
H-score

Baseline 56 + 47 49 + 28

Posttreatment 46 + 38 34+ 21

Changes from baseline —10 + 25 0.06 —14 +24 0.003
Premenopausal women N=19 N =22

Baseline 21+17 19 +12

Posttreatment 17 £12 14+£73

Changes from baseline —3.6 = 9.4 0.17 —-524+99 0.03
Postmenopausal women N=10 N=10

Baseline 24 +10 19+97

Posttreatment 19 +18 134+9.8

Changes from baseline —5.4 £+ 11 016 —-61+94 0.08

?Paired signed-rank test for changes from baseline within a treatment group.

postmenopausal women, therefore we performed an analysis stratified
by menopause. A significant Ki67 decrease was found only in pre-
menopausal women treated with telapristone acetate (mean reduction
of 5.2 in the telapristone acetate group, P = 0.03 and mean reduction of
3.6 in the placebo group, P = 0.17). The change in Ki67 was unrelated
to the abundance of PR expression in the tumors (Supplementary
Fig. S1). There was also no correlation between the duration of therapy
and change in Ki67 (P = 0.25 for both telapristone acetate and placebo
arms; Supplementary Fig. S2).

Because the mean reduction of Ki67% in the treated arm was more
modest than expected, and changes were seen in the placebo arm, we
postulated that the Ki67 changes seen in each group would be clarified
using gene expression data. For this purpose, we set a post hoc threshold
of 30% reduction to stratify participants into “responders” and “non-
responders” and explore the association of gene expression changes
with Ki67 response. Using this response parameter, we identified 12 of
31 (39%) “responders” in the telapristone acetate group, and eight of
29 (28%) “responders” in the placebo group (Fig. 2A).

RNA sequencing and quantitative technical confirmation
Transcriptome analysis was performed on samples from 60 women
(31 telapristone acetate and 29 placebo) with high-quality RNA (mean
%DV200-800 was 62 + 12%). Overall, differential gene expression
analysis comparing baseline with posttreatment values for each tumor
showed no significant modulation of genes in either group. A nominal
P < 0.05 was seen in 15 of 17,109 genes in the telapristone acetate
group, and 11 of 17,205 genes in the placebo group, but none survived
adjustment for multiple comparisons. We then focused on the sub-
group of participants whose samples showed a relative Ki67 reduction
of >30%. In “telapristone acetate nonresponders,” there were no
genes that were significantly altered posttherapy. Among “telapristone
acetate responders,” we found 103 of 6,623 genes to be significantly
modulated (i.e., log, fold change > %1, P,g; < 0.05) by telapristone
acetate treatment (64 upregulated and 39 downregulated; Fig. 2B and
D; Supplementary Table S1A). The pathway enrichment analysis
revealed that these downregulated transcripts were associated with
the progression of cell cycle, mitosis, and chromatin organization,
among others; the upregulated transcripts were enriched for vesicle-
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mediated transport pathway (HBAI/HBA2/HBB/GJAI; P < 0.05,
FDR g < 0.25; Fig. 2E; Supplementary Table S1B). Of note, the
IFN signaling pathway was suppressed (STATI/HLA-G/KPNAZ2/IFI6;
P = 0.054, FDR q = 0.174); and the activation of the complement
cascade pathway of the immune system was activated close to the
significance cutoffs (CFD/CFB/C4A/C4B; P = 0.052, FDR q = 0.174;
Supplementary Table S1B). At an individual gene level, there was
significant suppression of progestin target genes (PTTGI, FADS2,
PLKI, SLCIAI) and ERBB2 expression and an increase of PGR
expression (Supplementary Table S1A). Notably, 11 downregulated
genes (FBXL20, PSMD3, MEDI, STARD3, ORMDL3, PGAP3,
PPPIRIB, GSDMB, MIEN1, GRB7, and ERBB2) are located together
on the HER2 amplicon locus at chromosome 17 cytoband q12 (Fig. 3;
Supplementary Table S1A). In contrast, the placebo “responder” group
showed significant modulation of 124 of 7,921 genes: 115 upregulated
and nine downregulated (Fig. 2B; Supplementary Table S2A). How-
ever, there were no significantly enriched pathways except the upre-
gulation of Fc epsilon receptor (FCERI) signaling (FOS/NR4A1/JUN/
EGFR/FGF7/CDKNI1A), which is part of immune response signaling
pathway (P = 0.029, FDR q = 0.218; Supplementary Table S2B).

There were four genes (ALDH1A1, CFD, PFKFB3, PLIN1) that were
common between placebo and telapristone acetate group and upre-
gulated in both groups (Fig. 2C). These genes are associated with
metabolism and innate immune response signaling pathways. Impor-
tantly, none of the pathways significantly modulated in telapristone
acetate responders were modulated in placebo responders.

We also examined a variety of published gene signatures related to
progesterone effects on cancer stem cells (23, 24), tumor angiogen-
esis (25), metastasis (26), and the PR isoform-specific signature (9),
and did not observe any distinct pattern of modulation compared with
placebo responders.

To confirm the findings of the RNA-seq transcriptome analysis,
we evaluated a total of 47 target genes with three housekeeping genes
(GUSB, HPRTI1, PGKI) using quantitative gene expression assay
(nCounter assay; NanoString Inc.) in 50 subjects with sufficient
residual RNA amounts (>100 ng; Supplementary Table S3A). The
selection was based on significant modulation in the telapristone
acetate responder group; 12 downregulated genes were associated
with the top-ranked enriched pathways (cell-cycle progression, mito-
sis, cell division, and cytokine IFN signaling). Five upregulated genes
were also selected (CYBRDI, SLC1A1, TFAP2B, PGR, ERBB4), but
these were not significantly enriched in pathway analysis. An addi-
tional 26 genes were selected from the published literature (5,7, 9, 27);
they included progestin target response genes (ASPM, MGP, CDC20,
CDK1, TOP2A, ACAT2, ADCY2, ISG15, LICAM). We also included
three cell proliferation markers (CDC20, RRM2, and UBE2C) from the
PAMS50 gene set (28, 29). Finally, we included the ESRI. The threshold
of statistical significance was P < 0.05 adjusted by Benjamini-Yekutieli
method (—LogoP.gj > 1.3). The results are summarized in Supple-
mentary Fig. S3 and Supplementary Table S3B. Of note, we found that
the 13 of 26 (50%) genes that demonstrated close to significant
modulation by sequencing (HIST2H3A, HIST2H3C, ASPM, TOP2A,
RADS54L, KIFC1, MYBL2, ISG15, ATAD3C, AURKA, CDKI1, ECT2,
and RBP4) were significantly modulated in the nCounter assay. Finally,
we found significant suppression in four of five cell proliferation
markers (CEP55, MKI67, RRM2, and UBE2C) with a borderline
significant suppression of CDC20 expression (P,q; = 0.051). None of
these significant changes in telapristone acetate-treated responders
were observed in placebo-treated Ki67 “responders” (Supplementary
Fig. S3, left). Within the telapristone acetate-treated group, we found
that RBP4 gene was significantly downregulated in both Ki67
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Figure 2.

Gene expression and functional analysis of Ki67 responders in patients treated with telapristone acetate (TPA) or placebo. A, Ki67 Change in placebo arm, and in
telapristone acetate arm stratified by Ki67 response. Threshold of the Ki67 response was > relative 30% reduction. B, Volcano plots display gene expression changes
in response to telapristone acetate or placebo treatments. Threshold of significance was log, (fold change) > +1(x-axis) and the adjusted P < 0.05 (y-axis). Left, there
were the nine genes downregulated including MKI67 and the 115 genes upregulated in placebo responders (n = 8). Right, there were the 39 genes downregulated and
the 64 genes upregulated in telapristone acetate responders (n =12). C, Overlap between the genes significantly regulated in response to the telapristone acetate-
and placebo therapy. There was minimal overlap between two groups except 4 genes (ALDHIAT, CFD, PFKFB3, PLINT), which were upregulated in both groups. These
genes map to metabolism and innate immune system pathways. D, Heatmap displays log, fold change of the 103 genes that are significantly regulated in response to
telapristone acetate therapy. Fold change in both telapristone acetate- and placebo arms is plotted. The induction (red) or repression (blue) of gene expression is
shown for each gene. E, Heatmap plots the normalized enrichment scores (NES) of the pathways significantly enriched in the gene set enrichment analysis (GSEA) on
the expression changes observed in response to telapristone acetate therapy. Each color represents negative enrichment (blue), no enrichment (white) and positive
enrichment (red). The cutoff for GSEA was the gene set size of at least three and FDR g < 0.25. IFN signaling pathway was suppressed and complement cascade
pathway was increased close to the statistical significance.
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Figure 3.

PGAP3 GRB7

The chromosomal location of HER2 amplicon or genes close proximity to it. Eleven genes located in chromosome 17 (912-q21) locus were significantly downregulated
in the telapristone acetate-treated responder group. Among these, five genes (ERBB2, MED1, STARD3, PGAP3, GRB7) were the known HER2 amplicon genes (red
arrows and font; refs. 36, 51) and six other genes (FBXL20, PPP1R1B, MIENT, GSDMB, ORMDL3, PSMD3) were adjacent to this locus.

responders and nonresponders (Supplementary Fig. S3, right; Sup-
plementary Tables S3B and S3D). Unlike RNA-seq analysis, the PGR
expression was unchanged in TPA-treated responders. Of note, the
ESRI expression was not modulated by TPA treatment in both RNA-
seq and the nCounter assay.

Serum hormones changes and missed periods in
premenopausal women

Given the known effect of telapristone acetate on the suppression of
ovulation in premenopausal women (30), we measured serum con-
centrations of estradiol, progesterone, and FSH prior to and following
intervention. The mean concentration of each hormone is summarized
by menopausal status (unadjusted for menstrual cycle phase) in
Supplementary Table S4. telapristone acetate—treated premenopausal
women showed a significant decline of the mean concentrations of
estradiol and progesterone (—39.7 & 66.8 pg/mL, P = 0.01 for estradiol;
—2.95 £ 4.69 ng/mL, P = 0.003 for progesterone), but changes in the
placebo group were not significant. Similarly, the concentration of FSH,
decreased significantly in telapristone acetate-treated participants
(—6.37 £ 18.6 mIU, P = 0.01), without a similar change in the placebo
group. We used the preintervention last menstrual period (LMP) date
and the usual menstrual cycle length to assess the fraction of premen-
opausal women who were expected to have a period during therapy but
did not. In the telapristone acetate arm, 12 of 22 premenopausal women
(54.5%) missed an expected period, whereas only three of 19 women
(15.8%) of placebo group did. To evaluate whether changes in serum
hormones explained the telapristone acetate response, we examined
serum hormone changes among telapristone acetate responders, non-
responders, and the placebo group (Supplementary Fig. S4). Serum
estradiol was significantly decreased in telapristone acetate responders,

but there were no other significant decreases in either hormone by
treatment group or response.

Plasma and tissue concentrations of TPA and its metabolite

Of 61 participants, 32 women presented detectable plasma con-
centrations of telapristone acetate (CDB-4124) and its active metab-
olite (CDB-4453). Of these, benign tissue samples were available for
drug quantitation from 31 women, and tumor samples were available
for quantitation from 22 women. The mean plasma and tissue con-
centrations of each analyte are summarized in Table 3. Overall, we
observed that the ratio of parent drug to metabolite was approximately
3:1in plasma and 4:1 in tissue. The concentrations of both parent drug
and its metabolite were twofold higher in benign tissue than in tumor
samples (326 ng/g vs. 157 ng/g for CDB-4124 and 78 ng/g vs. 41 ng/g
for CDB-4453). There were strong positive correlations between
benign and tumor tissue concentration (coefficient r = 0.71, P =
0.0002 for CDB-4124 and r = 0.56, P = 0.007 for CDB-4453) and with
plasma concentration (r = 0.62, P = 0.0003 for CDB-4124). These
strong correlations were similar in pre- and postmenopausal women
for parent drug, but not for the metabolite.

Quality-of-life assessment and adverse events

Quality-of-life (QoL) parameters assessed by the BESS question-
naire at study entry and on the day prior to surgery are summarized in
Supplementary Table S5. At baseline, the mean scores for all clusters
were similar across arms. There were no between-group differences in
the change of symptom severity from baseline to posttreatment.
Following treatment, the mean score for body image symptoms
(unhappy with the appearance of body, weight gain or loss, and
decreased appetite) decreased significantly in both groups (P = 0.01

Table 3. Concentrations of telapristone acetate and its metabolite (CDB-4453) in plasma and breast tissue samples.

Concentrations (mean + SD)

Spearman correlations

Tissue (ng/g)

(Benign with tumor) (Benign with plasma)

Analytes Plasma (ng/mL) Benign Tumor r P r P
Total (N =32) (N =230 (N =22)
TPA 147 £ 1M 326 + 287 157 £ 130 0.71 0.0002 0.62 0.0003
CDB-4453 51+ 25 78 + 64 41+ 27 0.56 0.007 0.30 on
Premenopausal (N =22) (N=21) (N=17)
TPA 152 £+ 120 282 + 243 149 £ 124 0.56 0.02 0.54 0.01
CDB-4453 48 + 26 64 + 50 40 + 28 0.47 0.06 0.32 0.15
Postmenopausal (N =10) (N=10) (N=15)
TPA 138 + 92 420 + 359 185 + 162 0.90 0.04 0.77 0.009
CDB-4453 58 + 25 107 + 82 44 + 27 0.70 0.19 0.07 0.85
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for placebo and P = 0.009 for telapristone acetate). In addition, adverse
events (AEs) reports are summarized in Supplementary Table S6. A total
of 70 randomized participants were eligible for evaluation of AEs. All of
these were grade 1 events, with the exception of a single case of atrial
fibrillation in the placebo group (the subject was under treatment for
hyperthyroidism). Since grade 1 events consisted of commonly expe-
rienced minor symptoms, we evaluated the events that occurred at least
three times during therapy. Among telapristone acetate—treated women,
there were three who met this criterion: one with gastrointestinal
symptoms (nausea, abdominal pain, constipation/abdominal disten-
sion). One subject reported musculoskeletal symptoms (back pain, neck
pain, and myalgia), and another experienced nervous system disorders
(dizziness, paresthesia, and headache). In the placebo group, one subject
experienced musculoskeletal symptoms (back pain, neck pain, and
myalgia). Overall, there was no between-group difference (P = 0.99).

Discussion

We report the first study of the effects of telapristone acetate, a
second-generation SPRM, in women with early-stage, predominantly
ER-/PR-positive breast cancer. We chose a window-of-opportunity
design because the safety of this agent at the dose we used has been
established in several trials in women with uterine fibroids or endo-
metriosis. However, given lack of efficacy data in patients with breast
cancer, a formal neoadjuvant study was not justified. We found that cell
proliferation (Ki67 labeling) decreased significantly in the telapristone
acetate-treated group, from a mean of 19% to 14% (P = 0.003); there
was a smaller, more varied, but still significant decrease in the placebo
group (P =0.04). The results in the telapristone acetate arm represent a
74% reduction rather than the prespecified 50% and therefore do not
formally meet the criterion for success. However, our goal was to
perform a preliminary evaluation of this class of agents in a treatment-
naive early breast cancer population, and the findings discussed below
provide sufficient encouragement to investigate SPRMs further for
breast cancer therapy. Our trial was stratified by menopausal status,
and we observed a significant within-group decrease in Ki67 LI in
telapristone acetate—treated premenopausal women, but not in the
premenopausal placebo group. Among postmenopausal women, there
was a nonsignificant decline in both placebo and telapristone acetate—
treated groups. We weighted our recruitment 2:1 toward premeno-
pausal women, expecting a larger effect in a population that is currently
exposed to progesterone. Thus, the postmenopausal data are arguably
inadequate for evaluation of this class of agents; further studies should
not therefore exclude postmenopausal women.

Our ability to demonstrate a significant between-group decrease in
Ki67 index was limited by a decline in Ki67 labeling, with greater
variation (SD 10% expected vs. 18% observed), within the placebo arm.
Similar decreases in Ki67 index in the placebo group have been seen in
other studies (31-33), likely explained by intratumoral heterogene-
ity (34), and preanalytic processing differences between DCNB samples
and surgical excisions. A recent report comparing MKI67 gene expres-
sion in core biopsies with the surgical specimen showed that MKI67
expression was not significantly correlated in the two samples (r = 0.35,
P = 0.10; ref. 35), although other genes and pathways showed good
correlations. Our DCNB samples came from a variety of regional
hospitals, and therefore preanalytic variation is likely. However, we
took great care with quality control for the staining and scoring protocols
for Ki67; pre- and posttherapy samples were batch-sectioned, kept cold,
and stained within 4 weeks; two different image analysis systems
produced highly concordant results, and correlated well with manual
reads by our study pathologist. Our quality checks for scoring showed
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results that were similar to an international comparison of Ki67 ITHC
evaluation, where intralaboratory reproducibility was high (36).

Another source of Ki67 variation may be an imbalanced distribution
of placebo and treated participants by menstrual phase, which has been
shown to affect Ki67 positivity and expression of proliferation-related
genes in ER-positive breast tumors (37, 38). Horimoto and colleagues
evaluated the Ki67 index in paired biopsy and surgical specimens from
146 patients, and found that Ki67 expression was similar in menstrual
phase-concordant diagnostic and surgical specimens, but declined
when the diagnostic sample was luteal and the surgical sample was
nonluteal. Although we collected menstrual cycle data and measured
serum hormones at study enrollment, the DCNB was performed days
or weeks prior to enrollment, and menstrual phase at the time of CNB
could not be reliably ascertained. A random excess of luteal phase
DCNB samples in the premenopausal placebo participants may there-
fore explain the decline in Ki67 index between DCNB and surgery.
However, because KI67 declines were also seen in postmenopausal
placebo patients, it is likely that the causes are multifactorial. In the
telapristone acetate group, these influences may have diluted the drug
effect. Future trials should include strategies to control these sources of
variation.

Despite the modest antiproliferative effect suggested by the Ki67
changes in the telapristone acetate arm, and the unexpected declines in
the placebo arm, our RNA-seq and nCounter results add considerable
weight to the conclusion that telapristone acetate treatment did in fact
have significant antiproliferative effects on breast cancers. Gene
expression changes and enriched pathways in the TPA-responsive
group, but not the placebo group, consisted largely of cell-cycle genes
relating to mitosis, chromatin modification, and cell-cycle regulation.
Furthermore, the observed gene expression changes were almost
completely nonoverlapping with those in the placebo arm, and no
significant changes were seen on pathway analysis in the placebo
group. These clinical trial findings are consistent with our previous
report on multiple ER-/PR-positive breast cancer cell lines, where
telapristone acetate inhibited cell-cycle progression (G,—M; ref. 7); and
in rodent mammary carcinogenesis models, where telapristone acetate
treatment greatly decreased cell proliferation, angiogenesis, and tumor
incidence (10).

Eleven downregulated genes in the telapristone acetate arm are
members of the HER2 amplicon on chromosome 17 or immediately
adjacent to it: FBXL20, PSMD3, MEDI1, STARD3, ORMDL3, PGAP3,
PPPIRIB, GSDMB, MIEN1, GRB7, and ERBB2. Although the associ-
ation of HER2 overexpression or amplification with breast cancer is
well known, much less is known about the other genes within this
region of chromosome 17. Shiu and colleagues used siRNA technology
to knockdown the expression of a number of genes within the
amplicon to determine if any of these genes are critical for survival
of breast tumor cells. Silencing of PMSD3 expression was correlated
with a significant loss of viability in almost all cell lines tested; the effect
of STARD3 was much more modest (39). The coincident downregula-
tion of these genes in the telapristone acetate responder group suggest
coordinate regulation of transcription. Alcala-Corona and colleagues
used gene expression data to construct a model of the hierarchical
modular structure of the HER2-enriched transcriptional network (40).
One of the 162 components in this network contains 4 of the 11
telapristone acetate-genes: ERBB2, GRB7, PGAP3,and STARD3. Their
fully connected pattern in the model indicates “close coexpression,”
which may be due either to cis and/or trans regulatory elements, or to
coregulator expression, possibilities we will pursue in future studies.
Overall, our data suggest that telapristone acetate administration
downregulates the expression of ERBB2 as well as a number of other
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genes colocated on chromosome 17q12, which is predicted to result in
apoptosis of the tumor cells. Examination of intrinsic cluster 5 of
METABRIC, which contains the ERBB2-amplified cancers (PAM50
HER?2), shows that luminal B and A tumors also segregate within this
cluster (41). These may be the luminal tumors that respond to
antiprogestin therapy.

Interestingly, we have observed that IFN signaling pathway was
specifically inhibited in the telapristone acetate responder group, which
relates to the recent observation that PR attenuates the expression of
IFN-stimulated genes in both the presence and absence of ligand (42).
The IEN metagene is reported to indicate poor prognosis, in HR-
positive/HER2-negative disease (43). Our novel finding that the IFN-
stimulated genes (ISG15 and IFI-6) were inhibited by telapristone acetate
treatment, along with STAT1, is particularly noteworthy inlight of recent
evidence, suggesting that exosome transfer from the stroma to breast
cancer cells initiates antiviral signaling (44, 45). The expression of a
specific set of IFN-stimulated genes (the IFN-related DNA damage
resistance signature or IRDS) predicts radiotherapy and chemotherapy
resistance (46). In breast cancer, the IRDS clinical classifier comprises
seven genes that include STATI and ISG15. Exosomes transferred from
stromal cells to breast cancer cells appear to increase the expression of
the IRDS genes, with STATI/IRDS and Notch 3 acting cooperatively to
expand tumor-initiating cells and tumor-resistant cells (44). Down-
regulation of STATI by telapristone acetate may be responsible for the
decreased expression of ISG15 and IFI-6 observed in our study. The
consequences of this effect of telapristone acetate on IFN-stimulated
genes on therapeutic resistance, and stemness (47), deserve further
investigation using SPRMs such as ulipristal acetate or onapristone.

Going forward, an important aspect of defining the role of SPRMs in
breast cancer therapy will be the identification of parameters that select
patients for therapy. Candidates that have been suggested by others
revolve around phosphorylated PR (23) and the expression of PR iso-
forms (5,29). We were unable to evaluate these in this study due to limited
tissue availability from the DCNB, and our prioritization of RNA-seq
studies; but our findings do point to potentially important pathways that
should be evaluated in the future (HER2- and IFN-related genes, among
others). Other important avenues for investigation relate to the combi-
nation of anti-progesterone and anti-estrogen therapy, as suggested by
others (5, 48-50), as well as combinations with drugs targeting protein
kinases such as MEK (51) and CDK4/6 inhibitors such as palbociclib (52).

The dose of telapristone acetate that we used (12 mg) was selected on
the basis of safety in trials for benign gynecologic diseases. This may
not be optimal for antitumor efficacy, but we chose it with the longer
term objective of testing SPRMs for breast cancer prevention, where
safety is a primary concern. Higher doses of single-agent mifepristone
have been tested in patients with metastatic breast cancer (200-400 mg;
refs. 18, 53, 54); but showed insufficient activity in advanced disease.
More recently, phase I trial testing of mifepristone in combination with
chemotherapy yielded promising results (55). Because telapristone
acetate has been removed from the clinical development pipeline (after
acquisition by Allergan), the appropriate dose for other SPRMs will
need to be determined. Therapeutic indications will allow some
tolerance for adverse effects, but preventive indications will not.
Reassuring data regarding tolerability and liver safety continue to
accumulate from trials of uterine fibroids (16, 56).

Our data also document the suppression of menstruation and of
serum progesterone levels in premenopausal women, which points to
the possibility that some of the effects of telapristone acetate on tumor
cell proliferation may be indirect. It is also consistent with the present
interest in the long-term contraceptive potential of these drugs (30)
and NCT03296098. The effects of ulipristal acetate on breast epithelial
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proliferation are currently being assessed in NCT02922127; and those
of mifepristone on the breast epithelium of in BRCA 1/2 mutation
carriers is under study in NCT01898312. Thus, it is possible that
SPRMs will present premenopausal women with an option that
provides both breast cancer prevention and contraception.

We measured plasma and breast tissue concentrations of telapris-
tone acetate and its active metabolite, and found that benign breast
tissue drug concentrations related well to those in the plasma, and to
those in tumor tissue. However, there was no significant correlation
between tumor drug levels and plasma concentrations; or between
tumor drug concentration and Ki67 response (data not shown).

In summary, our results are sufficiently encouraging to justify
additional trials with SPRM:s in both the treatment and the prevention
setting. Each will need to be evaluated individually, because differences
exist between these agents, but ulipristal acetate and onapristone
(ZK98299) are excellent candidates for development in this direction.
Longer term trials in women with fibroids have now been completed
with ulipristal acetate (56), and trials in stage IV breast cancer have
been initiated with onapristone, so that it is now possible to consider a
true neoadjuvant trial with a clinical response endpoint in early breast
cancer. Predictors of benefit clearly need to be pursued further; and if
the downregulation of HER2 amplicon genes is corroborated, SPRMs
combinations with anti-HER2 agents should be tested in the treatment
of HR-positive tumors where HER2 and other genes on this amplicon
are overexpressed. Finally, the possibility of a novel intervention for
premenopausal women with HR-positive breast cancer will be a very
welcome addition, because recent innovations in endocrine therapy
have not benefited this important group of patients.
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