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ABSTRACT 

Spatial transcriptomics is an emerging technology to profile spatially resolved gene 

expression. Its preserved capture locations allow researchers to investigate transcriptomes in 

the tissue context. Large volumes of spatial transcriptomics data under different study designs 

have been generated, but the lack of a public database with systematically collected and 

processed data makes data reuse challenging. We present Spatial transcriptOmics Analysis 

Resource (SOAR), a database with analysis capability and an extensive collection of spatial 

transcriptomics data. We systematically curated, reviewed, annotated, and pre-processed 132 

datasets containing 1,633 samples across 22 tissue types from 6 species. SOAR provides 

interactive web interfaces for users to visualize spatial gene expression, evaluate gene spatial 

variability across cell types, and assess cell-cell interactions. Besides data access and 

download, SOAR can aid researchers in investigating whether a specific gene expression is 

associated with distinct spatial patterns or cell-cell communications. SOAR is publicly 

available at https://soar.fsm.northwestern.edu/. 
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INTRODUCTION 

Recent technological advances in spatial transcriptomics have made it possible to measure the 

transcriptome while retaining the coordinates of capture locations in tissues. Spatially 

resolved transcriptomics allows researchers to study the association between gene expression 

and the spatial organization of capture locations 1. This provides helpful insights into tissue 

functions and disease pathology, facilitating discoveries in cancer research 2-9, neuroscience 

2,10-23, and developmental biology 24-28. Spatial transcriptomics can also play an important role 

in generating insights in precision medicine which increasingly integrates Omics data with 

other modalities of health care data (e.g., clinical data) 29-33. In recent years, various spatial 

transcriptomics technologies have been proposed and widely applied, including next-

generation sequencing (NGS) approaches like 10x Visium, ST 2, Slide-seq 10,24, and DBiT-

seq 26, as well as fluorescence in situ hybridization (FISH) methods like MERFISH 34,35, 

osmFISH 13, seqFISH 11,34,36, and seqFISH+ 37. Despite the rapid accumulation of spatial 

transcriptomics publications and datasets, the vastly dissimilar formats of datasets from 

different techniques make data reuse challenging. A user-friendly and comprehensive public 

database for spatial transcriptomics with analysis capability will greatly facilitate data 

sharing, exploration and meta-analysis among the research community. 

A limited number of public spatial transcriptomics resources is available, including 

SpatialDB 38, Museum of Spatial Transcriptomics 39, spatialLIBD 12, and STAR-FINDer 25, 

Amyotrophic Lateral Sclerosis Spinal Cord Atlas 40. SpatialDB 38 is a manually curated 

database with 24 datasets that provides spatial transcriptomics data visualization and spatially 

variable gene identification results. Museum of Spatial Transcriptomics 39 is an annotated 

literature list with download links to public spatial transcriptomics datasets. The other 

resources 12,25,40 are data atlases regarding one tissue type and provides spatial expression 

visualisations of brain, fetal intestine, and spinal cord, respectively. To the best of our 
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knowledge, there is a lack of a large-scale, systematically curated spatial transcriptomics 

database that provides unified data access, exploration and analysis across different tissue 

types. 

Here, we present SOAR (Spatial transcriptOmics Analysis Resource), an extensive and 

publicly accessible resource of spatial transcriptomics data. SOAR 

(https://soar.fsm.northwestern.edu/) is a comprehensive database hosting a total of 1,633 

samples from 132 datasets, which were uniformly processed using a standardized workflow. 

Its data collection covers 22 different tissue types including numerous organs, developmental 

stages, and pathological conditions such as cancer. SOAR also provides interactive web 

interfaces for users to visualize spatial gene expression, explore gene spatial variability, and 

assess cell-cell interactions using an in-house developed, novel approach. SOAR will be 

continuously maintained in order to provide great utility to the biological, biomedical, and 

clinical research communities for harnessing the power of spatial transcriptomics data. 

MATERIAL AND METHODS 

Data collection 

We queried the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) for 

human and mouse spatial transcriptomics datasets using the keywords 

“spatial+transcriptomics”, “spatial+transcriptome”, “spatial+RNA-seq”, and 

“spatial+RNA+sequencing”, and downloaded 353 datasets from unique GEO series (GSE) 

accessions. Additionally, we manually reviewed the papers in the Museum of Spatial 

Transcriptomics 39 and collected 73 publicly available datasets (19 FISH, 54 NGS). We also 

collected 114 datasets from other resources including Single Cell Portal 

(https://singlecell.broadinstitute.org/single_cell), 10x spatial gene expression demonstration 

datasets (https://support.10xgenomics.com/spatial-gene-expression/datasets), Spatial 
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Research Lab (https://www.spatialresearch.org/resources-published-datasets/), 10x spatial 

publication list (https://www.10xgenomics.com/resources/publications), Amyotrophic Lateral 

Sclerosis Spinal Cord Atlas 40, spatialLIBD 12, STAR-FINDer 25, and Brain Research through 

Advancing Innovative Neurotechnologies Initiative – Cell Census Network 

(https://biccn.org/data). Next, we removed the duplicative datasets, validated that the 

downloaded data used FISH or NGS-based spatial transcriptomics technology, and excluded 

the datasets missing spatial coordinates information. In total, we collected 132 datasets 

containing 1,633 spatial transcriptomics samples from eight different technologies (Figure 

1A). 

Data processing 

We downloaded the count matrices and coordinate information for each dataset and applied a 

systematic data processing workflow (Figure 1A) to all the collected datasets. To account for 

the resolution and sequencing depth difference among spatial transcriptomics techniques, 

samples measured using different technologies were processed with different quality control 

(QC) protocols. For 10x Visium, ST and DBiT-seq datasets, we removed the capture 

locations with fewer than 500 unique molecular identifiers (UMIs), fewer than 500 genes, or 

≥ 25% mitochondrial reads 41,42. We further excluded the capture locations with a total UMI 

count (or a total number of genes) three standard deviations below the medium 43. Finally, we 

filtered out the genes that are expressed in less than five capture locations. The QC pipeline 

for MERFISH, osmFISH, seqFISH, and seqFISH+ datasets was similar. Genes expressed in 

fewer than five capture locations were excluded 43, and capture locations with fewer than 500 

UMIs or ≥ 25% mitochondrial reads were removed 41. We performed QC on Slide-seq 

samples so that only the capture locations with total UMI counts greater than 100 and the 

genes with UMI count greater than 300 in all the capture locations are included 38. After QC, 

we normalized and transformed the datasets with raw, unnormalized expression matrices 
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using SCTransform, a framework for the normalization and variance stabilization of 

molecular count data 44. We next performed principal component analysis on normalized data 

and clustered the capture locations through a shared nearest neighbour approach. All data 

processing was conducted using Seurat V3 43. 

Cell type annotation 

We performed cell type annotation on SOAR’s spatial transcriptomics datasets using SingleR 

45, a method capable of annotating the cells in test datasets based on their similarities to 

reference single-cell RNA sequencing (scRNA-seq) datasets with known cell types. To 

identify such reference datasets, we queried the GEO and curated an average of two well-

annotated scRNA-seq datasets for each tissue type featured in SOAR. After QC, 

normalization, and transformation, these scRNA-seq datasets were used as references for 

annotating the cell types of spatial transcriptomic capture locations of the corresponding 

tissue type. In particular, for complex tissues such as tumour and brain, we adopted 

heuristics-guided approaches to improve the performance of cell type annotation. 

For cancer datasets (185 samples in total), we first identified possible lymphocyte capture 

locations using known biomarkers (CD45, CD3D, CD3E, and CD3G) through differential 

expression analysis, identifying clusters with greater than 1.2 average log fold-changes for 

one or more lymphocyte genes and over 20% capture locations expressing at least one of the 

biomarkers. Next, we identified capture location clusters that differentially expressed CD4 or 

CD8A/CD8B genes in a similar manner. Among these clusters, we annotated those that were 

also found to be possible lymphocyte clusters in the first step as CD4 or CD8 based on the 

percentage of capture locations in the cluster expressing CD4 versus CD8A/CD8B genes. 

Next, we performed cell type annotation on all the remaining clusters using SingleR 45, with 

scRNA-seq datasets of the same cancer type curated in a previous study 46 as the reference. 
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The cell type of each cluster was then determined by the annotation results from different 

references, weighted by the number of cells in the respective reference dataset. 

For brain datasets (866 samples in total), we followed the Common Cell Type 

Nomenclature (CCN) 47 and annotated their capture locations as glutamatergic, GABAergic, 

or non-neuronal. Two scRNA-seq datasets from the Allen Brain Map (https://portal.brain-

map.org/atlases-and-data/rnaseq) were used as the references – the Human Multiple Cortical 

Areas SMART-seq dataset (for annotating human samples) and the Mouse Whole Cortex and 

Hippocampus dataset (for annotating mouse samples). Firstly, we identified marker gene sets 

for each cell type and each species by performing differential gene expression analysis on the 

corresponding reference scRNA-seq dataset using Seurat V3 43. Next, we used AUCell 48 to 

score the activity of glutamatergic, GABAergic, and non-neuronal gene sets at each capture 

location based on marker gene expressions. Capture location clusters in the sample can then 

be classified as neuronal or non-neuronal according to the sum of AUCell scores across 

capture locations. Finally, we used SingleR 45 to annotate the neuronal clusters as 

glutamatergic or GABAergic based on a filtered version of the reference dataset that only 

contained neuronal cells. 

Data analysis 

To facilitate the characterization of the functional architecture of complex tissues, we 

identified genes with spatial patterns of significant expression variation using SPARK-X 49. 

Spatial variability analyses were conducted across the whole tissue and in different cell types, 

respectively. 

Cells of different cell types may interact through cell-cell contact or long-distance 

signalling 50. To study possible cell type interactions, we investigated whether the gene 

expression levels in a query cell type (CTQ) are influenced by its spatial proximity to another 

cell type (CTI). In order to evaluate neighbouring interactions, we performed Wilcoxon rank-
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sum tests to test if genes are differentially expressed in CTI adjacent and nonadjacent to CTQ 

using the FindAllMarkers function in Seurat V3 43. Next, to assess the cell type interactions 

over distance, we regressed the expression of a gene G in CTQ (𝐸𝐶𝑇𝑄,𝐺) capture locations on 

their median Euclidean distance to CTI capture locations (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑇𝑄,𝐶𝑇𝐼). Intuitively, the 

calculated regression coefficient (𝛽) quantified the association between the gene expression 

in CTQ capture locations and the distance between CTQ and CTI. Therefore, a positive 𝛽 may 

reflect CTI’s inhibitory effect on the expression of G in CTQ, whereas when 𝛽 < 0, CTI 

capture locations may play a promotional role. 

𝐸𝐶𝑇𝑄,𝐺 = 𝛼 + 𝛽 ∙ 𝑀𝑒𝑑𝑖𝑎𝑛(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑇𝑄,𝐶𝑇𝐼) 

All the p-values were adjusted for multiple testing using the false discovery rate (FDR) 

approach, and we assume statistical significance at an adjusted p-value of q < 0.05. 

Website development 

SOAR is a comprehensive and user-friendly database that aids the exploration and analysis of 

spatial transcriptomics datasets. The website was implemented using the R Shiny framework 

(R v4.0.5) on an Apache2 HTTP server and is compatible with smartphones and tablets. The 

website consists of five functional components, “Home”, “Data Browser”, “Explore Gene”, 

“Download”, and “Help”. The “Home” module includes an overview of SOAR, and users 

may search for a gene of interest in this module. Users could browse SOAR’s curated 

datasets using the “Data Browser” module to pinpoint their sample of interest and visualize 

spatial gene expressions. Upon searching for a gene on the homepage, users will land in the 

“Explore Gene” module, which enables users to evaluate the spatial variability of genes in 

different tissues and assess possible cell type interactions. All the results and visualizations 

from user-performed analyses are downloadable. In the “Download” module, users could 

download phenotypic metadata, standardized gene expression, and coordinate data of all the 
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samples in SOAR. The “Help” page documents the website and includes a tutorial with step-

by-step instructions for using the database. SOAR is free and open to all users at 

https://soar.fsm.northwestern.edu/ and there is no login requirement. 

RESULTS 

Data summary 

SOAR includes 1,633 spatial transcriptomics samples of six different species (human, mouse, 

chicken, pig, thale cress, and aspen) from 132 datasets utilizing eight different spatial 

transcriptomics technologies (Figures 1B and 1C). The human and mouse samples come from 

different organs (brain, heart, intestine, joints, kidney, liver, lymph node, muscle, prostate, 

skin, spinal cord, testis) and other specific tissues including body fat, cancer, and embryonic 

tissues (Figure 1C). All the curated gene expression data, coordinate data, metadata, and 

analysis results can be downloaded from the “Download” module in SOAR. 

 

Figure 1. Overview of SOAR. (A) Datasets hosted on SOAR were curated from public 

domains. The samples were processed using a standardized workflow, including quality 
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control, normalization, transformation, dimensionality reduction, and cell type annotation. 

SOAR also provides interactive interfaces for users to evaluate the spatial variability of genes 

in a cell type of interest, assess cell-cell interactions, and visualize spatial gene expressions. 

The expression profiles and coordinate data for all samples can be downloaded from SOAR. 

(B) Statistics of data from different spatial transcriptomics technologies in SOAR. The 95% 

confidence intervals for the means are plotted as error bars. (C) In total, SOAR contains 

1,633 spatial transcriptomics samples from 6 different species across 22 tissue types. 

Data browser module 

To aid user conducted analysis, we constructed a comprehensive data browser that is hosted 

on SOAR and contains the meta-data for all included spatial transcriptomics datasets. For 

each dataset, detailed information includes the hyperlink to the corresponding publication, the 

spatial transcriptomics technology used, and sample information including the number of 

samples, the species, organ, tissue, and the disease state of the sample. Furthermore, we 

document the average number of capture locations and genes per dataset, and in each sample 

after QC. Our data browser allows users to quickly select samples of interest to further 

explore and analyze via interactive figures and tables. All the generated figures and tables are 

easily downloadable to support personal and large-scale research projects. 

Explore gene module 

Spatial transcriptomics makes it possible to analyze a gene’s spatial variability within 

different cell types. It also enables us to study cell type interactions by investigating whether 

a gene’s expression appears to be promoted or inhibited when in proximity to another cell 

type. The gene search bar on the homepage of SOAR allows users to query the results of 

these analyses for a specific gene of interest. Upon searching for a gene, SOAR directs the 

user to the “Explore Gene” tab, which subsequently prompts the user to narrow down the list 
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of datasets by tissue type, species, and, for users conducting cancer studies, the type of 

cancer. SOAR allows users to perform three types of analyses – spatial variability, adjacency-

based cell type interaction, and distance-based cell type interaction. 

Spatial variability. The spatial patterns of gene expression variation may inform us about 

cell-cell interactions or the migration of cells to different tissue locations 51. In the “Explore 

Gene” Module, the “Spatial variability” function allows users to evaluate the statistical 

significance of gene’s spatial variability across the whole tissue or in specific cell types. 

When the user selects a gene, SOAR generates a heatmap to summarize the significance of 

the gene’s spatial variability (Figure 2A). This heatmap allows users to explore whether the 

given gene has a distinct spatial expression pattern in the whole tissue or in a specific cell 

type. CXCL9 and CXCL13 are known to be associated with the degree and prognosis of 

cancer 52,53, and their spatial expressions were also found to have a significant pattern 

variation in previous studies 51,54. As an illustration, we visualized the spatial variability of 

these genes across the whole tissue and in different cell types in breast cancer samples 

(Figure 2A). As shown in the figure, CXCL9 and CXCL13 often had significant spatial 

expression variations in malignant capture locations. 

To improve the accessibility of this visualization function, SOAR also allows users to 

visualize the spatial expression patterns of a gene in the “Data Browser” module. For 

example, in a specific breast cancer sample, SOAR identified 6,757 spatially variable genes 

(FDR < 0.05), and they included cytokines like CXCL9 (adjusted p-value = 5.76 × 10-29) and 

CXCL13 (adjusted p-value = 1.00 × 10-32). These genes were found to be expressed in a 

visually distinct region (Figure 2B), along with the interleukin 2 receptor subunit gene IL2RB 

(adjusted p-value = 3.13 × 10-18), indicating a potential acute local inflammatory response 55. 

Taken together, these demonstrated that SOAR could provide useful insights for identifying 

biologically relevant biomarkers in tissue samples without histological annotation. 
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Figure 2. Examples of SOAR features exploring the spatial variability of genes in breast 

cancer spatial transcriptomics datasets. (A) In the “Explore Gene” module, users can 

visualize whether a gene is significantly spatially variable in different cell types in a heatmap. 

The result file can be downloaded as a tab-delimited file, and the generated figure can be 

downloaded in JPG and PDF formats. (B) In the “Data Browser” module, users can view a 

sample and visualize the spatial expression of a gene of interest. Black arrows indicate 

distinct regions of high expression of CXCL9, CXCL13, and IL2RB. q, false-discovery-rate-

adjusted p-values. 

Adjacency-based cell type interaction. Gene expression variation at the border between 

different cell types may reflect cell-cell interactions 50. In the “Adjacency-based cell type 

interaction” tab, after the user selects a gene and a query cell type, the gene’s differential 

expression between the query cell type capture locations adjacent or nonadjacent to 
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interacting cell types will be visualized in a heatmap. Each tile in the heatmap is coloured by 

the log-fold changes and sized according to their statistical significance. This allows users to 

explore whether the gene is involved in cell-cell interactions between the given cell type and 

others. Complement component 3 (C3) plays a central role in complement activation, which 

may aid immune surveillance against tumour cells 56,57. In tumour microenvironments, 

cancer-associated fibroblasts are often the most prominent cell type 58,59 and known to 

express C3 46. As an example, we used SOAR to investigate how adjacent cell types 

influence C3 gene expression in cancer tissue fibroblasts. Our analysis results revealed that in 

cancer tissues, fibroblasts adjacent to CD4 cells have higher C3 expression levels (Figure 

3A). This finding corroborates existing knowledge of the positive relationship between C3 

activation and T cell infiltration in tumour tissues 60. In contrast, cancer tissue fibroblasts 

adjacent to malignant cells have lower C3 levels. Previous studies have shown that cancer 

cells may limit C3 activation 61, which is supported by our results. 

Distance-based cell type interaction. Interactions between cell types can occur beyond 

simple adjacency 50. This type of long-distance communication can be characterized by 

regressing the gene expression levels in capture locations of a certain cell type on their 

Euclidean distances from other cell types. Under the “Distance-based cell type interaction” 

tab, users can select a gene and a query cell type, and a heatmap of the regression coefficients 

will be shown. The heatmap visualizes the associations between the gene’s expression in 

capture locations of the query cell type and their distances from potential interacting cell 

types, as well as whether the associations are significant. This allows users to evaluate any 

possible far-reaching cell-cell interactions that might not have been captured in the 

adjacency-based analysis. As an illustration, we studied whether the expression levels of 

RPLP1 in malignant capture locations were influenced by their distances from other cell 

types. In our analysis results, RPLP1 often had lower expression levels in malignant capture 
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locations when they were closer to M1 macrophages (Figure 3B). RPLP1 is a ribosomal 

protein gene found to be upregulated in tumour tissues 62,63 and promote cancer cell invasion 

64. On the other hand, M1 macrophages secrete proinflammatory cytokines and contribute to 

inflammation response against migrating tumour cells 65. The inhibitory effect of M1 

macrophages on the expression of RPLP1 in tumour cells, and in turn, on cell invasion 64, is 

supported by our results. 

 

Figure 3. Examples of SOAR features exploring cell type interactions in cancer spatial 

transcriptomics datasets. In the “Explore Gene” module, users can interactively input a 

tissue type, species, gene, and query cell type and explore (A) adjacency-based and (B) 

distance-based cell type interactions. The results can be downloaded as a tab-delimited file, 

and the generated figure can be downloaded in JPG and PDF formats. (A) Adjacency is 
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defined according to the spatial coordinates of tissue capture locations, and Wilcoxon rank 

sum tests were used to evaluate the gene's differential expression between the query cell type 

capture locations adjacent or nonadjacent to interacting cell types. The log-fold changes and 

their significance are displayed in the heatmap. (B) The expression of a gene in capture 

locations of a query cell type is regressed on their median Euclidean distance to interacting 

cell types. Positive (blue) regression coefficients indicate inhibitory gene regulatory effects, 

and negative (red) regression coefficients suggest promotional effects. The significance levels 

of regression coefficients are shown in the heatmap. BC, breast cancer; CRC, colorectal 

cancer; Log2FC, log-fold changes; MM, melanoma; OC, ovarian cancer; PC, prostate cancer; 

PDAC, pancreatic ductal adenocarcinoma; q, false-discovery-rate-adjusted p-values; SCC, 

squamous cell carcinoma. 

DISCUSSION 

Spatial transcriptomics enables researchers to study gene expressions in a spatially 

contextualized way and hence offers rich and powerful data for a wide array of research 

pursuits, including biological mechanism elucidation and clinical biomarker discovery. 

However, due to the novel nature of this technology, accessing and utilizing published spatial 

transcriptomics data via existing data repositories can be quite challenging, impeding the full 

potential of this new and exciting technology. To facilitate future spatial transcriptomics 

research, we developed SOAR, a Spatial transcriptOmics Analysis Resource hosting a large 

number of downloadable spatial transcriptomics datasets in standardized data format. SOAR 

also provides a user-friendly analytic and visualization framework for visualizing spatial gene 

expressions, evaluating the spatial variability of genes in different tissues, and assessing 

possible cell type interactions. Our case studies show that users may derive biologically 

meaningful insights from these analysis and visualization tools. Over the coming years, we 

anticipate the spatial transcriptomics research community to only grow larger. SOAR will 
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continue to grow alongside this trend and be maintained to continuously offer useful analysis 

and meta-analysis tools for future researchers. 

AVAILABILITY 

SOAR is available at https://soar.fsm.northwestern.edu free and open to all users with no 

login requirement. All spatial transcriptomics datasets and analysis results can be downloaded 

from the data download page. 
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