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Abstract

In acute care, a patient’s clinical deterioration is often a precursor to serious and
often fatal outcomes. To reduce the severity and frequency of negative outcomes,
care providers need to response rapidly by providing quick evaluation, triage, and
treatment to patients with declining conditions. However, a provider’s availability
to respond can be constrained when multiple patients are deteriorating at the same
time. To study the multiple patients rapid response process, we introduce a network
model with complex structures, such as split, merge, and parallel. Iterative methods
are presented to evaluate the mean decision time (i.e., the average time from the
detection of a patient’s declining to a physician’s treatment decision being made). It
is shown that such methods lead to convergent results and high accuracy in perfor-
mance evaluation. Such a model provides a quantitative tool for healthcare profes-
sionals to design and improve rapid response systems.

Keywords Rapid response - Decision time - Mean waiting time - Multiple patients -
Patient deterioration - Iterations

1 Introduction

After the publication of the US Institute of Medicine’s report “To Err is Human”
(Kohn et al. 2000), there has been a national initiative in the US to improve patient
safety (Watcher 2004; Leape and Berwick 2005; Berwick et al. 2006; Brind-
ley 2010). In addition to regular care services, rapid response teams (RRTs), also
referred to as medical emergency teams (METs), or critical care outreach (CCO),
have been implemented in many hospitals to provide quick evaluation, triage,
and treatment to patients with clinical signs of deterioration on the hospital floor
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Fig. 1 Rapid response process with multiple patients

(DeVita et al. 2006, 2011). However, recent studies have indicated that there exist
inconsistent results regarding the effectiveness of implementing RRTs. Therefore, an
in-depth study of the efficacy of RRTs is necessary.

To study this issue, in this paper, we consider a rapid response system with mul-
tiple patients in a teaching hospital environment. In such systems, multiple patients
could deteriorate simultaneously. Each requires timely diagnosis and treatment from
a limited number of providers, who need to make prompt decisions through a hierar-
chical referral procedure. When a patient’s deterioration is identified by a monitoring
nurse, he/she can inform one of the providers or the RRT, as shown in Fig. 1. In other
words, the nurse can notify either the intern, or the RRT, or both RRT and one provider
(intern, resident, fellow, or attending). The RRT can either keep the patient “stay” or
can notify the resident and rely on his/her judgment. If a provider is asked, either a
diagnosis and treatment decision can be made, or assistance from an upper level pro-
vider can be sought. For instance, an intern (or RRT, or RRT & intern) may seek help
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from the resident. Similarly, the resident (or RRT & resident) may either make a deci-
sion or ask help from the fellow. The fellow (or RRT & fellow) again can make a deci-
sion or request the attending’s help. The attending (or RRT & attending) must make a
final decision, in one of the four options: elevating the patient to be admitted to “ICU”,
monitoring for progressive care (referred to as “step down”), moving to a telemetry bed
(“tele”), or keeping the patient for observation (i.e., “stay’).

As one can see, the rapid response process requires integrated and collaborative
operations of multiple care providers from different divisions or departments. Early
identification, better recognition, as well as prompt response and treatment, play
key roles. Therefore, a systematic study of the whole rapid response system (RRS),
rather than an individual response or a provider, is necessary and important (DeVita
et al. 2006). Among various performance measures, the mean decision time, i.e.,
the average time from decline to an appropriate medical decision is important since
clinical studies have shown that patient safety is strongly correlated to the decision
time (Hillman et al. 2001). Therefore, evaluation of the mean decision time is of
critical importance for RRS, which is the focus in this study.

Although extensive clinical studies have been devoted to the rapid response pro-
cess, the investigation from a systems engineering point of view is still limited. To
bridge this gap, both discrete event simulation and analytical methods are viable.
They are complement to each other and have different advantages and limitations,
which can provide results and insights from different perspectives. In this paper, we
focus on developing an analytical method. The contribution of this paper is to intro-
duce an iteration method to evaluate the average decision time in a multi-patient
rapid response process, where the extra waiting times, due to unavailability of the
providers are taken into account and are updated through recursive procedures.
To our best knowledge, no such study is available in the literature. Using such a
method, the estimation of the mean decision time can be obtained, which is critical
to patient safety. Such a method provides a quantitative tool for operation manage-
ment of the rapid response process with multiple patients. In addition, such a model
could also enable us to identify the response time that is most critical to the overall
decision time through sensitivity analysis. Then efforts can be organized to decrease
this response time, such as increasing number of resident doctors, thus reducing the
number of patients each covers, so that the overall decision time can be improved.

The remainder of the paper is structured as follows: Sect. 2 briefly reviews the
related literature. Section 3 introduces the rapid response process in multiple patients
environment and formulates the problem. By considering limited resource, a two-
level iteration method to estimate the mean decision time is presented in Sect. 4.
Finally, Sect. 5 presents conclusions and summarizes future work. All proofs are
provided in the “Appendix”.

2 Related literature
The historical report “To Err is Human,” published by the US Institute of Medi-

cine, has estimated that the number of potentially preventable hospital deaths in
the US is up to 100,000 per year (Kohn et al. 2000). Since its publication, there
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has been a worldwide concern regarding patient safety; numerous efforts have been
made to improve processes (see, for example, reviews by Watcher 2004; Leape and
Berwick 2005; Berwick et al. 2006). Moreover, the data in the report has triggered
a trend in the US to implement RRTs (or METs, CCO) in hospitals (DeVita et al.
2011). Numerous studies have been carried out to investigate the effectiveness of
RRTs and RRSs. In some studies, it is found that the implementation of RRT has
provided a systematic response procedure to patients with deterioration episodes,
leading to substantial reduction in mortality in some hospitals (e.g., Priestley et al.
2004; DeVita et al. 2006; Dacey et al. 2007). However, in other hospitals, such posi-
tive improvements were not observed and there is no consistent clinical conclusion
regarding the effectiveness of RRTs (see Massey et al. 2010; Hillman et al. 2005;
Winters et al. 2007; Ranji et al. 2007; Chan et al. 2010). As most of the available
studies are observational or trial-based, a systematic study using mathematical mod-
els could provide a new perspective and generate guidance to adjust and optimize
the existing rapid response system (Downey et al. 2008).

Clinical studies have suggested that the majority of the patients show signs of
deterioration before ICU admission (Hillman et al. 2001; Downey et al. 2008; Xie
et al. 2012, 2014), and the time of quick response and treatment to patient decline
is critical to reduce safety risk and ICU burden (McGloin et al. 1999; McArthur-
Rouse 2001). Thus, a quantitative study of the response and decision time in RRS
becomes important. However, in the current literature, only the single patient sce-
nario has been studied (see papers by Xie et al. 2012, 2014). In Xie et al. (2012), the
mean decision time and its variability are analyzed via a response network model
with split and merge. The most impeding response, i.e., the bottleneck response
with respect to improvement in individual response time can be identified. To fur-
ther investigate the system behavior, the response time performance (RTP), i.e., the
probability that an appropriate decision can be made within a desired time duration,
is proposed by Xie et al. (2014). A closed formula is presented under exponential
assumption of response time, and an empirical modification law for the general case
is introduced. The bottleneck response from the RTP perspective is also analyzed.

However, these studies are based on response process for a single patient and
assumes providers are always available. In practice, there are multiple patients on
the floor, and more than one patients may deteriorate simultaneously while the num-
ber of providers on the hospital floor is limited. Thus, there is a chance that the
limited providers may need to treat multiple patients who are deteriorating simul-
taneously. In this case, care delivery may be delayed due to the unavailability of
providers. This will significantly impact patient safety and quality of care. Unfortu-
nately, such a scenario has not been investigated yet.

From the methodology point of view, among substantial efforts contributing
to healthcare systems research, simulation has been used as a prevailing tool (see
reviews by Jacobson et al. 2006; Gunal and Pidd 2010; Wiler et al. 2011; Zhong
et al. 2015). Although simulation is a viable approach, this paper provides an alter-
native and complement method based on network analysis. Analytical model can
provide a fast and accurate estimation and is not dependent on the detailed descrip-
tion of the process. More importantly, such a quick approach enables us to study
numerous scenarios related to sensitivity analysis and design considerations to
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find better solutions. For example, queueing models and Markov chain approach
are often used [see monographs by Brandeau et al. 2004; Hall 2006 and papers by
Schaefer et al. 2005; Green 2006; Fomundam and Herrmann 2007; Lakshmi and
Iyer 2013; Garg et al. 2010; Mayhew and Smith 2008; Wang et al. 2012, 2013,
2014]. However, in some cases, some specific assumptions (e.g., poisson arrivals,
exponential service time) may limit their applications. For example, a Markov chain
model of ward patient rescue process is presented by Xie et al. (2016). Although
RRT is involved in the model, the main focus is on estimating the steady state prob-
abilities of patient status based on exponential assumption of intervention time.

To summarize, developing a novel analytical model to study rapid response sys-
tem with multiple declining patients and limited provider availability is necessary,
which is pursued using an analytical approach in this study.

3 System assumptions and problem formulation

Consider a rapid response system under a multi-layer referral mechanism, shown in
Fig. 1. The variables used to characterize the rapid response process throughout the
paper are summarized in Table 1.

Remark 1 In the US medical system (Whitlock 2017), particularly in teaching hospi-
tals, “interns” refer to the doctors who have completed their first year of post-medi-
cal school training; the residency follows the intern year. Fellows are the physicians
who have completed their residency and have elected to complete further training in
a specialty. Finally, attending physicians are those who have completed their training
and practise independently in their chosen specialty.

The following assumptions define the patients, the providers, and their
interactions.

(1) There are m patients in the system. Each patient is continuously monitored.
When a decline in vital signs, such as heart rate, blood pressure, or respiratory
rate, is detected, the primary nurse will respond to notify the RRT or the intern,
or inform both the RRT and a provider (intern, resident, fellow, and attending)
for help.

(2) Once the nurse call is received, the provider should arrive immediately and carry
out appropriate diagnosis and treatment. A decision will be made according to
the patient’s condition. The decision includes sending help requests to a higher
level provider (as shown in Fig. 1), or one of the following four options: ICU,
step down, tele, or stay. The RRT can only make a “stay” decision. If the attend-
ing is called for help, his/her decision is final.

(3) The probability of provider i’s possible action j (making a final decision or asking
for higher level help) is defined as a; o where i € {nur, int, rrt, res, fel, int&rrt,
res&rrt, fel&rrt}, and j € {rrt, int, res, fel, atn, int&rrt, res&rrt, fel&rrt,
atn&rrt}.
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Table 1 Variables

Providers

rrt Rapid response team

nur Nurse

int Intern doctor

res Resident doctor

fel Fellow doctor

atn Attending doctor

Time

T; Mean response, diagnosis, and treatment time of provider i

Tir Mean decision time including patient k’s waiting time for provider r
T,ormal Average time period a patient is not in declining status

T, Mean decision time in Level-1 iteration, including additional waiting time
Tl Mean decision time after 2-level iterations

T, Mean decision time

Probability

a; Probability that provider i will ask for help from provider j

Di Probability that response i has been carried out

Dir Probability that provider r is treating patient k with another request
Pr Percentage of time the patient is in a deteriorating status

Ay Probability patient k is declining with other patients

(4) Each patient may exhibit his/her own deteriorating characteristics. In other
words, the patients’ deteriorations are independent. Thus, it is possible that
multiple patients decline simultaneously. However, each provider can only take
care of one patient at a time.

(5) The response time (including diagnosis and possible treatment time) of provider
i is modeled by a general random distribution with mean z;. However, if mul-
tiple patients are declining and need the specific provider at the same time, the
provider will work with the first requesting patient, and other patients will wait
until the current response is finished.

Remark 2 The above assumptions imply that the providers follow a first-come-first-
serve policy to respond to patient deteriorations (assuming that all clinical declines
have the same priority), which is typical in most acute care environments.

Remark 3 In practice, when the higher level provider is busy, the staff who initiated
the request may wait or seek help from other providers, which depends on patient
status, clinical protocols, and physicians’ preferences, etc. The latter one is indeed
considered from routing probability perspective, where the scenarios of routing to
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the second provider are already included in the data. Thus, in the current model, we
assume the former case (i.e., waiting) only.

Such a rapid response process can be viewed as a complex network model
consisting of split, merge, and parallel features. Thus, we define a resource set
of RRT, intern, resident, fellow and attending doctors, and their joint groups as
X = {rrt, int, res, fel, atn, rrt&int, rrt&res, rrt&fel, rrt&atn}. Let t; denote the
decision time, i.e., from the time a decline is detected to the time a final deci-
sion is made. In addition, introduce T, as the mean decision time. Clearly, T} is
not a simple summation of all the response times since it includes the possible
unknown waiting time due to interactions between all the providers and patients.
Thus, T, is a function of all processes involved, including patients’ decline,
responses from all the providers, and decisions. As one can see, 7, cannot be
estimated directly due to the complexity of the system. Developing a method to
estimate such a time is needed.

Therefore, the problem to be addressed in this paper is formulated as: Under
assumptions (1)—(5), develop an analytical method to evaluate the mean decision
time in the multiple patients rapid response system.

As one can see, the rapid response process is complex involving multiple care
providers (nurse, intern, resident, RRT, fellow, attending, and a combination of
them) and various routings for response. In addition, if several patients decline
simultaneously, providers will be unavailable, making the process even more
complicated. Thus, direct analysis is constrained by the curse of dimensional-
ity (e.g., using Markov chain or state-based methods), and the non-exponential
nature of service time will again increase the level of difficulty. Therefore, a hier-
archical structure and a two-level iteration method are proposed for this study.

Remark 4 In practice, improving operation management is of critical importance
in healthcare delivery. Using the analysis method introduced in this paper, one can
adjust the system parameters to predict the system performance and compare them
to find an appropriate direction or strategy for operation improvement. For instance,
one can adjust a provider’s mean response time to find out whose response is more
critical and then reduce the response time. One can also evaluate the impacts of dif-
ferent team configurations and compare them, such as a more experienced nurse
with a quick response time working with a junior resident needing more time to
response, or a recently graduated nurse working with a senior resident.

The details of the iterative method to solve the problem are presented in Sect. 4.

4 Performance analysis method

We first review the case of single patient. Then, using a three-patient example, the
idea of the iteration approach is introduced. Finally, the general case is discussed.
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4.1 Single patient case

When there is only one patient involved in the rapid response system, a formula
to evaluate the mean decision time 7, is introduced in Xie et al. (2012).

T, = 2 pPiti
ieX

where 7;, i € X, is the average response time of provider i, and p; is the probability
that response i, i € X, has been carried out. Then p; can be calculated as follows:

-

1, if i = nur,
QAo if i€ {int, rrt, rrt&int, rrt&res,
rri&fel, rrt&atn},
Pi = e
anur,res + Zj:int,rrt,rrt&int aj,respj’ if i= res,

arex,felp res T ares&rrt,fe[p res&rrt? if =f 615
Cpot amPr T Crpi&efel amP rrisefels if i=am.

When there is only one patient, the providers are always available. If there are
multiple patients and more than one patient is deteriorating simultaneously, a pro-
vider can only take care of one patient at a time so that the other patients may
need to wait for additional time. To study such cases, we start with a three-patient
example.

4.2 Athree-patient example

When multiple patients are declining simultaneously, they may need to share the
limited resource (i.e., providers). For example, as shown in Fig. 2 (where “N” and
“D” represent normal and declining states, respectively), patient 2 starts declining
and immediately requests help from the RRT. During the time period of RRT diag-
nosis and treatment to patient 2, patient 1 starts deteriorating and also asks for help
from the RRT. However, patient 1 needs to wait until the RRT finishes the treatment
for patient 2 and requests higher level provider’s intervention. The wide dark bar
represents the waiting time due to RRT sharing. Similar scenarios can be observed
for all other care providers, where the patients need to share the same resource.
However, the extra waiting time due to such sharing is not easy to analyze. First,
when a patient in a hospital ward may decline at any time, resource sharing can only
occur when multiple patients are deteriorating during the same time period. Second,
even if multiple patients are declining, they may request different providers; which
resource being shared and the length of extra waiting time are still not clear. The
time depends on the probability that a provider is called and his/her response time.
Thus, a closed form formula to estimate waiting time is extremely difficult to obtain.
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Fig.2 RRT is shared by two patients

To solve this problem, an iteration approach is introduced. As there are two
factors that initiate the waiting time: multiple patients decline simultaneously,
and they all request the same provider, we introduce a two-level iteration method.
First, the waiting time due to requests to the same provider is addressed. Since
such analysis rely on the probability that the provider is treating other patients,
which is unknown, we introduce iterations, referred to as Level 1 iteration. Sec-
ondly, using the information from Level 1, the waiting time due to multiple
patients’ simultaneously declining is studied. Again since this depends on another
unknown probability, the probability that multiple patients are declining, we
introduce iterations again, referred to as Level 2 iteration. An illustration of both
Level-1 and Level-2 iterations is shown in Fig. 3.

As one can see, in Level-1 iteration, we consider each patient k iteratively. Using
parameters p;, 7;, and T}, in single patient case, the possibility that the same provider
can be requested by k patients simultaneously is investigated and the response time
(including additional waiting time) for patient i is quantified. Using this result for
the next patient, we calculate the similar information. Then the same process to is
carried out the third patient. Afterwards, using the updated information, the pro-
cedure restarts with the first patient. Upon Level-1 iteration convergence, the mean
decision time 7, including 7, and the waiting time, is obtained.

Using T;,, and the time that the patient is in non-deteriorating condition, 7,,,,,,..»
Level-2 iteration is carried out. We calculate the probability that multiple patients
are deteriorating and the mean decision time (including the waiting time) for each
patient. The result is then supplied to the next patient and evaluate its probability
and decision time. When all patients’ information are updated, we start the next iter-
ation. Upon convergence, the final decision time 7}, is obtained. Below, through a
three-patient example, the details of the two-level iterations are explained.

4.2.1 Level-1 iteration
In Level-1 iteration, the single patient model is used to evaluate the mean decision

time, T,, and to calculate the probability a provider is requested for help, p;, i € X,
under the assumption that all providers are available.
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Fig. 3 Illustration of the two-level iteration procedure

Consider patient k, k = 1,2, 3, and provider r, r € X. Denote 7, s the mean deci-
sion time that includes patient k’s waiting time for provider r. Let p; . be the prob-
ability that provider r is treating patient k and there is another request for provider r.

First, consider patient 1 requesting help from an intern. For this patient, he/she
needs to wait if he/she requests help from an intern but the intern is treating the sec-
ond or the third patient. We denote such probabilities as p, ;,, and p; ;,,, respectively.
If these probabilities are known, then the average response time of the intern includes
the time when only the intern is requested, p;,7;,. and the time when both intern and
RRT are requested, p,,,gin T rsain Therefore, the mean decision time, 7y ;,,, will include
the actual time to make decision when provider is available, 7, and the first patient’s

@ Springer



A two-level iteration approach for modeling and analysis of... 45

Waiting time for the intern, PintTint +prrt&intTrrI&inzv multlphed by the prObability the
second or third patient is being treated by the intern, p, ;,, + p; ;,,- Therefore, we obtain:

Tl,im‘ = Td + (pZ,im‘ +p3,inz)(pint7im + prrl&imTrrt&int)'

Using 7, ;,,, we can evaluate p, ;,, which is the probability that the first patient is
working with the intern when the second or the third patient also requests help from the
intern. Again such a request can occur in both single provider (inf only) and joint pro-
viders (both rrt&int) scenarios. For the single provider case, p;, 7;,,/ 7} ;,, T€presents
the percentage of time that the intern is working. Analogously, for the joint providers
Case, Py i&in Trraint/ T1,ine TEPTESENLS the time percentage the intern is working (jointly
with RRT). Multiplied by p;,, or p,,.&in» respectively, we obtain the weighted prob-
ability that the intern is serving another patient. Therefore, considering both cases, we
have,

2 2
_ pmtfint + prrl&,‘mrrrt&int
Plim = :

T1,int

Analogously, if we know probabilities p, ;, and p;;,, we can evaluate the sec-
ond patient’s waiting time for the intern, 7, ;,., as well as probability p, ;,,. In other
words, we have

TZ,int = Td + (pl,im +p3,int)(pintfint +prrt&intTrrt&int)’

2 2
p,‘mTint + prrf&imrrrt&int
D2int = .

T2 int

Using the same logic, from probabilities p, ;,, and p, ;,,, the third patient’s waiting
time for the intern, 75 ;,,, and probability p; ;,,, can be evaluated.

T3,int = Td + (pl,[nt +p2,int)(pintrint + prrt&intTrrt&int)’

2 2
pintTW +prrt&imT””&im
P3imt = :
T3,int

Since probabilities p; ., i = 1,2, 3, are unknown, we introduce iterations to con-
tinuously update p;;,, and 7;;,,, i = 1,2, 3, until convergence.

For resident, RRT, fellow and attending, similar updates can be carried out. Note
that for RRT, there will be multiple joint service scenarios (RRT & intern, RRT &
resident, RRT & fellow, and RRT & attending). A detailed description of such an
iteration procedure is presented in “Appendix 1”.

When the procedure converges, the mean decision time, T;,, which includes addi-

tional waiting time, can be calculated. This finishes Level-1 iteration.

T, =T;+%,,PT,.

r,re.
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4.2.2 Level-2 iteration

Level-1 iteration provides the results if the same provider is requested by multi-
ple patients. We also need to know when multiple patients will be declining. Thus,
Level-2 iteration is carried out. Denote p,, k = 1,2, 3, as the percentage of time the
patient is in a deteriorating status. In addition, let 4,, k = 1,2, 3, update the mean
decision time, including the case patient k is declining with other patients. In other
words, when patient 1 is declining, the additional waiting will occur if patient 2 or
patient 3 is also declining, and such a probability can be estimated as p,(p, + p3) if
p; 1s known. Thus, 4, can be evaluated as follows:

Ay =Tyl + p1(py + p3)].
Note that the probability of all three patients declining is typically very small so that
this scenario is ignored.
Next, calculate p, as the time percentage that a patient is in deteriorating status
during a normal-declining cycle, i.e.,

M +T,

normal

P1

s

where T, ... s the average time period a patient is not in declining status.
Moving to patients 2 and 3, we obtain p, and p; using the same logic.

Ay =Ty, [1+ py(p; + p3)],

2= VERR o i—
Ay =T, [1 + p5(py + po)],
P A3+ Tommar

As p;, i = 1,2,3, is unknown, we introduce another iteration. Assuming all p;’s
starting from 0, we calculate 4;’s and re-evaluate p;’s. The process is repeated until
the procedure converges. Finally, denote T}, as the final value of mean decision
time, we obtain

Tﬁnal = /ll = AZ = /13'

A detailed description of Level-2 iteration is provided in “Appendix 1” as well.

4.3 General procedure

Considering that there are m patients in the system. Using the similar idea in
three-patient example, the waiting time of patient k, k = 1, ..., m, for provider r,
r € X, needs to consider all the possibilities that the provider is treating patient i,
i=1,...,m, i #k. “Appendix 1” provides a formal presentation of the iteration
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method, referred to as Procedure 1. Such a procedure includes two algorithms:
Level-1 iterations and Level-2 iterations. The convergence of Level-1 iteration
can be rigorously proved if the number of patients in the network equals to 2. The
Level-2 iteration can be mathematically proved to be convergent for any number of
patients. These results are presented below.

Proposition 1 Under assumptions (1)—(5), when m = 2, Level-1 iteration of Proce-
dure 1 is convergent, i.e.,

: ) : ) :
limell=z,,  limpl=p,, i=12 rex M
Proof See the “Appendix”. O

Proposition 2 Under assumptions (1)—(5), Level-2 iteration of Procedure 1 is con-

vergent, i.e.,
lim A" =2, limp"=p, i=1...m @)
j—)m j—)m

Proof See the “Appendix”. O

If more than two patients present in the network, it is extremely difficult to pro-
vide a mathematical proof of convergence for Level-1 iteration due to its nature
of oscillating pattern. Thus, extensive numerical investigation of the convergence
of such a procedure is conducted. Numerous examples are generated by randomly
selecting parameters. In all the examples, the procedure converges and a unique
solution is obtained. Therefore, we formulate the results as a numerical fact:

Numerical Fact 1 Under assumptions (1)—(5), Level-1 iteration of Procedure 1 is
convergent when more than two patients present in the network, i.e.,

; 0 _ : 0 — P —
lim T = Tips lim P;, =Dir i=1,2,...,m. 3)
j—ooo b Jjooo ©
The convergence of 7; ., T; 11> Pjres and p;,, in Level-1 iteration is illustrated in

Figs. 4, 5, 6, 7. For Level-2 iteration, Figs. 8 and 9 illustrate the convergence of 4,
and p;, respectively. Other variables exhibit similar convergence properties.

Clearly, in all figures, the procedure only needs 3 iterations to converge. In fact,
the convergence is always observed in 3-5 iterations in all the examples we tested.
The accuracy of the procedure is investigated next.

4.4 Accuracy

The accuracy of Procedure 1 has been investigated numerically. Dozens exam-
ples were generated to compare with the simulation results. In each example, uni-
form distribution between 20 and 40 min is assumed for the response time of
each provider. The routing probabilities are randomly generated between O and
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Fig. 8 Illustration of conver-

gence of Level-2 iteration: 4, 53¢

454}
453}
<7452t
45.1}

451

449}

0 1 2 3 4 5
iteration

Fig.9 Illustration of conver- 0.08
gence of Level-2 iteration: p;

0.06

a” 0.04}

0.02} Pl

0 1 2 3 4 5
iteration

1, again following uniform distribution. An exponential distribution is assumed
for the patient time in the normal status. Since, in the wards, the patients are in
normal status most of the time, the ratio between declining and normal status for
patients is always assumed to be less than 20%. Finally, the simulations are exe-
cuted using Plant Simulation 9. In the simulation model, each patient is presented
as an entity. The service stations are introduced to characterize single processes.
The waiting queues are described as buffers. Flow controllers are used to deter-
mine the destination of the patients based on probabilities. For each simulation
experiment, 50,000 units of warm-up time are assumed. The next 5,000,000 units
simulation time are carried out, and 10 replications are conducted, to ensure the
confidence interval is less than 1% of the performance measure. Note that the
computation time of simulation is in the order of minutes or longer, while the
analytical model, programmed using Matlab R2016a, can be computed within a
few seconds (see Table 2).

Remark 5 Note that the simulation speed can be increased by optimizing the set-
ting and interface while the speed for analytical calculation can also be improved by
using executable programs. The comparison in Table 2 only illustrates one aspect of
the methods, the computation efficiency. There are many other aspects where sim-
ulations have an advantage, such as detailed outcomes and complexity modeling.
Thus, both approaches are viable from different perspectives, and complement each
other .
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Table2 Comparison of

Tr 2 patients 3 patients 4 patients 5 patients
computation time

Analytical model ~ 2.18 2.66 12.46 15.51
Simulation 556.79 803.77 1106.99 1451.81
Ratio (simula- 255.41 302.17 88.84 93.60
tion/analytical
model)

Denote TS"'” and T"e” as the mean decision times obtained by simulation and

by Procedure 1 for example i, respectively. Then €; defines the relative difference
wm i ltﬁrl
between rﬁnal and Tﬁnal ,1.e.,
ST, i llerl
_ |Tﬁnal - ﬁnal |
i Sim,i
final

- 100%.

The mean value of ¢; characterizes the average relative error and is denoted as €. The
results of accuracy are shown in Table 3, which provide the maximal, minimal and
average accuracy as a function of number of patients and normal time, respectively.

As one can see, € is typically increasing when the normal time becomes
shorter or the number of declining patients is higher. Particularly, when the nor-
mal time is not too short, i.e., more than 350 min (i.e., about 6 h), and the num-
ber of patients deteriorating is not high, e.g., less than 6, the accuracy is within
6%. Such errors may due to the heuristic updates in each iteration. When the
normal time becomes short and the number of declining patients increases, such
as 200 to 300 min normal time with number of patients up to 8 or 10, the accu-
racy decreases from 15% to 30% (even up to 50% for the worst case with 200
min normal time and 10 patients). In addition, the minimum and maximum of
€;’s are also included in the table. Similar trends are observed for the minimal
and maximal differences. However, the cases with large discrepancies seldom
happen, because these scenarios imply a substantial number of patients (e.g.,
10 patients) could decline simultaneously and also quite frequently (deteriorat-
ing every 3 or 4 h), then these patients could already have been elevated to ICU
or more providers have been called for help. Thus, the errors are small in most
practical scenarios. We thus claim that the iteration procedure can result in an
acceptable accuracy in estimating the mean decision time. In the scenarios of
extreme cases, the simulation approach should be pursued to ensure the accu-
racy of the analysis.

From the above results, we conclude that the two-level shared resource itera-
tion method can be used for performance evaluation of a multiple patients rapid
response system.
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4.5 Distribution sensitivity analysis

In the accuracy study, an exponential distribution is assumed in simulations for the nor-
mal time, i.e., when a patient is not declining. In practice, such times may not exhibit
exponential behavior. Investigating the case of non-exponential normal time is nec-
essary. Therefore, gamma and lognormal distributions were used since one can eas-
ily alter their coefficients of variation (CV). In addition, in the rapid response process,
a patient’s risk of deterioration becomes higher as the time elapses, which leads to
CV smaller than 1 (Li and Meerkov 2005). Therefore, we focus on four data points,
CV =0.25,0.5,0.75 and 1. First, additional accuracy studies using Lognormal and
Gamma distributions with CV = 0.25, 0.5, and 0.75 are carried out. As shown in
Table 4, the average accuracy is at the same level as exponential normal time.

Second, we hypothesize that the variability’s impact on the mean decision time will
be small. A dozen examples assuming Lognormal distributions were randomly gener-
ated and the largest possible relative error was recorded. Denote 7 ; as the mean deci-
sion time obtained from simulation, where j represents the experiment number, and
i indicates the CV value, where i = 1,2, 3,4 refer to CV = 0.25,0.5,0.75, 1, respec-
tively. Then the difference between the largest and smallest mean decision time in
experiment j for any given CV is defined as 6;, which represents the maximal deviation
under different variability.

5 = s T"{' — T oos,
min; T;;

Table 4 Accuracy of two-level iteration method: non-exponential case

Normal time (min) 300 350 400 450 500 550 600

(a) Lognormal distribution

2 patients (%) 0.68 0.61 0.58 0.53 0.50 0.48 0.44
3 patients (%) 1.43 1.28 1.15 1.05 0.97 0.90 0.84
4 patients (%) 2.54 2.22 1.94 1.70 1.51 1.39 1.25
5 patients (%) 393 3.38 2.92 2.56 222 1.92 1.73
6 patients (%) 6.26 5.27 4.56 4.12 3.66 3.12 2.82
8 patients (%) 12.83 10.48 8.86 7.63 6.71 5.84 5.24
10 patients (%) 22.15 17.25 14.29 12.17 10.68 9.62 9.02
(b) Gamma distribution

2 patients (%) 0.72 0.64 0.58 0.55 0.50 0.49 0.46
3 patients (%) 1.55 1.36 1.23 1.10 0.99 0.93 0.87
4 patients (%) 2.71 2.53 2.05 1.80 1.57 1.38 1.23
5 patients (%) 4.28 3.58 3.12 2.67 2.39 2.04 1.82
6 patients (%) 6.68 5.58 4.80 4.21 3.72 333 2.93
8 patients (%) 13.44 10.99 9.28 8.02 7.03 6.15 5.44
10 patients (%) 22.65 17.77 14.81 12.64 11.03 9.77 8.76
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Table5 Accuracy of two-level

. . TR Normal time (min) 300 350 400 450 500 550 600
iteration: lognormal distribution

case, 6 2 patients (%) 0.09 0.07 0.07 0.06 0.04 005 0.05
3 patients (%) 027 0.16 0.10 009 007 0.06 0.06
4 patients (%) 051 035 026 021 018 0.19 021
5 patients (%) 085 055 025 031 028 021 026
6 patients (%) 138 0.81 049 039 028 033 028
8 patients (%) 322 1.82 100 057 046 043 042

10 patients (%) 6.62 3.78 2.09 121 092 0.53 0.50

Table 6 Accuracy of two-level

. . R Normal time (min) 300 350 400 450 500 550 600
iteration: gamma distribution

case, & 2 patients (%) 023 0.6 0.13 011 009 0.08 0.06
3 patients (%) 051 036 029 022 0.9 015 0.12
4 patients (%) 091 066 044 042 031 026 0.29
5 patients (%) 146 093 083 056 048 037 037
6 patients (%) 212 138 101 080 0.64 063 041
8 patients (%) 432 282 1.86 142 111 093 070

10 patients (%) 7.68 476 3.14 225 156 128 1.12

Using the average value of §;, denoted as 5, we study the impact of non-exponential
normal time.

Z‘O | max; 7;;—min; ;|
J=1 min; T;;

5=
10

- 100%.

The results are presented in Table 5, where normal time is between 300 to
600 min under scenarios of 2 to 10 patients. It can be seen that the differences (6
’s) are quite small, less than 0.5% for the cases of 2—4 patients and up to 3.78%
for more-patient cases except the worst one (with 300 min normal time and 10
patients, making the difference as high as 6.62%).

Similarly, the results of a gamma distribution of normal status time are shown in
Table 6. Again 6 is smaller than 1% for cases up to 5 patients. If more patients are
deteriorating, the errors can increase to 4.76%, and the worst one (seldom happens)
is 7.68% with 300 min normal time and 10 patients. These results are also satisfac-
tory to support the hypothesis that the model reasonably represents reality. There-
fore, we conclude that, even with different patients’ declining distributions, the itera-
tion method introduced in this paper can provide an acceptable estimation of mean
decision time in the multiple patients system.
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4.6 Monotonicity

Using the iteration method introduced above, we can efficiently investigate the
monotonic properties of decision time with respect to its parameters, such as a pro-
vider’s response time, number of patients, and the normal time. Based on extensive
numerical experiments, we observe:

Numerical Fact 2 Under assumptions (1)—~(5), them mean decision time T, is
monotonically increasing with respect to each provider’s response time t;, normal
time T,,,..;» and number of patients m.

An illustration of such monotonicity is shown in Figs. 10, 11, 12. As one can
see, the monotonic properties can provide the direction of operation improvement
to reduce mean decision time. Decreasing the RRT’s response time, the number of
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Fig. 12 Monotonicity of mean
decision time with respect to
normal time
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patients (the providers are responsible for), and increasing normal time, all lead to
reduction of mean decision time.

Using such properties, we can evaluate the impact of improvement efforts to
identify the most critical factor that will lead to the largest improvement, which is
referred to as bottleneck.

Definition 1 The provider response time z; is the bottleneck response time if

oT,
oT;

oT,

arj

. Vi#FL

Since even the evaluation of T, is difficult, calculating the partial derivatives
becomes all but impossible. Therefore, sensitivity analysis is carried out. Specifi-
cally, response time 7; becomes the bottleneck if

Ty(z; = nz) > Ty(z; —ny),  Vj# i,
where 0 < n < 1.

After identifying the bottleneck, improvement efforts can be focused on how to
reduce the bottleneck response time. For instance, assigning patients with specific
diseases to residents who have more experience, reducing the frequency calling for
residents, etc., could be investigated. As one can see, this will requires repeated cal-

culation and comparison. Thus, the performance evaluation method introduced in
this paper enables a quick analysis in such activities.

Remark 6 The above model provides a quantitative tool for hospital management
to design continuous improvement activities. Note that due to shortage and/or mul-
tiple job functions of critical care providers and nurses (Buchman et al. 2017), and
restricted rules on their duty hours (Meyers et al. 2017), adding more staff is typi-
cally difficult to achieve. However, the system performance can be improved by
reorganize the workforce to find out the optimal or improved option of team configu-
ration of staffs, such as pairing a more experienced nurse with a new resident doctor.
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5 Conclusions

This paper introduces the study of rapid response system with multiple patients and
limited provider availability. An iteration method is introduced to evaluate the mean
decision time for multiple simultaneously declining patients. The convergence of the
iteration procedure is justified both analytically and numerically. It is shown that the
procedure converges within a few iterations and a reasonable accuracy is obtained in
the test cases. Such a method presents an effective quantitative tool for performance
evaluation of multiple patients rapid response system. The model and outcome of
this study have been well received by healthcare professionals.

Clearly, the proposed method also exists limitations. In future work, we plan to
address these limitations. Specifically, we will further explore to completely prove
the convergence of the recursive procedure. Also, analysis of the systems with more
complex structures should be conducted, for instance, multiple same type providers
may work on the floor simultaneously, providers may seek help from multiple higher
level resources at the same. In addition to average decision time, the variabilities
in decision time, such as coefficients of variation and response-time performance
(probability to make a decision within a given time interval) are also critical. Devel-
oping methods to evaluate the variability is strongly needed. Moreover, efforts can
be devoted to evaluating and comparing the impacts of different team configurations
to design appropriate staffing policy. Besides, patients are critical elements in health-
care delivery. Introducing a patient model to characterize the dynamic behavior of
the patient and declining status is necessary, and such a model should be integrated
with the response model. Furthermore, other methods, both simulations and analyti-
cal models, such as Petri Nets, Markov chains, should be investigated. Finally, more
insights, patterns, and protocol implications should be derived from the analytical
study, and all the developed methods and models will be validated and applied on
the hospital floor. The successful development of these works can provide hospital
management quantitative tools and decision support to improve patient safety and
quality of care.

Acknowledgements This work is supported in part by National Science Foundation Grant No. CMMI-

1536987 and by National Natural Science Foundation of China Grant No. 71501109.

Appendix 1: Iteration procedures

Three-patient example: Level-1 iteration procedure

Denote T]Ej)r, k=1,2,3, r € X, as the mean decision time that includes patient k’s
waiting time for provider » during the j-th iteration, j = 1,2, .... Let pg)r be the prob-
ability that provider r is treating patient k and there is another request for provider r

during the j-th iteration. At the beginning of iteration, assume

V=7, and pV=0, k=123 rex.
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(1)

First, consider patient 1. During the first iteration, T)in

, can be updated as:

(1) (U] (O]
1 int — Td (pz int + p3 ,m)(pznt int + prrt&intTrrt&im)'

The p(l.) can be updated as:

1,int

2 2
1 _ pimfim +prn&,'m‘[rrt&int

Lint — 1)
Tl,int

Next, Consider patient 2. Decision time r ', and probability p , can be calculated.

(1) (1 )
2 int Td + (pl Jint p3 mt)(pintTint +prrt&intTrrt&int)’

) pmt int + prrt&m;rrrt&int

p2 int T(l)
2,int

Lastly, consider patient 3, we have

(1) (e)) (1)
3 int Td (p],inz p2 mt)(pintfint + prrt&intTrrt&int)’

1) pmt int + prrt&,‘mfrrt&int

3int I3}
T3 int

This completes the update of the intern.
Similar updating process for the resident can be carried out. First, we study patient 1:

@»n _ ©) (©0)
Tl,res - Td + (p2 res p3 reé)(pres res +prrt&res rrt&res)

1 _ pres res +prrt&res rrt&res
lres — (1)
1,res

Next, consider patient 2:

@ _ M (©0)
TZ,res - Td + (pl,res p3 res)(p”—’b res +prrt&resTrrl&res)’

2
a PresTres + prrt&ms‘[rrt&res

2.res 1)
TZ,res

Then, patient 3 is included:

I _ (O] (1
73’,14 - Td + (pl,rev p2 my)(pres res +prrt&resTrrt&res)’

) p res Tres + p rrt&eres Trrt&res

3res 1
‘L'( )
3,res
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Similarly, all the rest of providers are updated. Particularly, for the RRT, considering
patient 1, we obtain:

(1) 0) 0)
1 rrt Td + (p2 rrt 3 rrt)(prrzTrrt + Prri&int Trrt&int + Prre&eres Trrt&res

+p rri&fel Trrt&fel +p rrt&atn Crrt&atn )’

a  _ 2 2 2 2
pl Jrrt (prrl rrt +prrt&intTrrt&int +prrt&resrrrt&res +prrt&felrﬂf&fd

(1)
+ prrt&amTrrf&am)/rl,rrt'

Regarding patient 2, we have

(1) (1
2 e Td + (pl rrt +p3 rrt)(prrzTrrt + Prrt&int Crrt&int + Prre&eres Crrt&res

+p rri&fel Trrt&fel +p rrt&atn Crrt&atn )’

(1) 2 2 2 2
p2 rrt (prrzrrrt + prrt&intTrrt&int + prrt&resrrrf&ref +prrt&felrﬂl&fel

2 (1)
+ prrt&amTrrf&af”)/TZ,rrt'

Furthermore, parameters of patient 3 are updated:

@O _ (1) ()
73!,,,, - Td + (pl,rrt +p2’rrt)(prrz7’-rrt + Prriseintrresint T Prroeres Trrigeres
+p rri&fel Trrt&fel +p rrt&atn Trrt&atn)’

(1) 2 2 2 2
p3 rrt (prrz rrt +prrt&intTrrt&int +prrt&resrrrt&res +prrt&}‘élrﬂl&f61

1)
+ prrt&amTrrf&am)/TB,rrt'

Then for the fellow, patients 1 to 3 are considered:

(1) (0) (0)
l,fel Td + (p2,fel 3fel)(pfelrfel + prrt&felfrrt&fel)

O _ pfeled +prrt&felTWT&f€l

1fel — (1) >
l,fel

(1) 1
zfg[ Td + (pl,fel 3f€[)(pfelrfel + prrt&felrrrt&fel)

O _ pfeled +prrt&felfrrf&f€l

2fel 1) >
T el

(1) (eY] (9]
Tyt = T+ Oy gy + P2 o) PreaTret + Prrisger Frrnsepe)s
O _ pfel fel +prrt&fel ”‘f&fffl

Pojr = T(l)
3.fel
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Finally, for the attending, we again address all three patients:

O _ 0) 0
Tl,atn - Td + (p2 arn +p3 am)(patn atn + prrt&az‘nfrr't&atn)’

1) patn atn + prrt&am Trrt&atn
lLam — (1) ’

Tl,am

@O _ (1) 0)
Tz,am - Td + @1 amn +P3 am)(pam atn +prrt&atnTrrt&am)’

2
) patn atn prrt&am Trrt&am
p 2.,atn ) 4
TZ,uln

- _ (e8] (1)
7’-3,[”,, - Td + (p] atn +p2 am)(patn atn + prrt&atnTrrt&atn)’

(1) patn ain +prrt&az‘nrﬂf&am
p’% amn ) :
3,atn

When the first iteration is finished, all the updated parameters will be used for the
second iteration to calculate rf) k=1,2,3,re X, and pk . The process is repeated
until procedure converges. Let 6 = 10~ -5 . When

|z — 9 <5, P —pP <5, i=1,23, rex,
ir ir ir ir

the procedure is convergent, i.e.,

G _ _ P
]11)1(1310 T = Tip ]lirglopl L= Dips i=1,2,3.
In particular, all 7;,,1=1,2,3, are identical and all piy»i=1,2,3, are the same.
Then the mean decision time (including waiting time) T, and provider utilization P
can be obtained:

r

Tl =12r=7'-3r:=T’ Pir =p2r=p(37r):=
The mean decision time T}, includes the additional waiting time.

Tin = Td + z“r,reXPrTr'
Three-patient example: Level-2 iteration procedure

Denote p(l) k=1,2,3,1=1,2,..., as the percentage of time the patient is in a deterio-
rating status in iteration j, and /1 k =1,2,3,1=1,2,.., as the updated mean decision
time in iteration j by mcludmg the time percentage patient k is declining. When the
iteration starts, assume all

pV=0 and A= k=1,23.

m’
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Considering patient 1, /1(11) can be updated as:
1 0 © 0
/1(1) m[1+p()(p(2)+p(3)>].

The time percentage that the first patient is in deteriorating status can be calculated
as

/1(1)
AT

normal

0 _
1

M ,1=2,3, can be obtained:

1 0 1 0
0=, [ 00 0]

Next consider patients 2 and 3, where A( ) and p;

(eY]
) _ A
2 (€Y]
’1 +Tormal
1 0 1 1
3= m[1+p<>(pg>+p;>)],
(1)
1 _ 13
3T m
/13 +Tnormal

This finishes the first iteration. Then p(l) k=1,2,3, and ﬂ;{l) are used for the second
iteration to evaluate p(z) and 2(2) The process is repeated until the procedure con-
verges. When the followmg crlterla is met:

2=l <s 1T a0 <6 i=1,23,
L L L L
the procedure is convergent. Again § = 10™. Upon converges, we have
lim A0 =4, lim PV =p.  i=123

The final mean decision time can be obtained:
i1 = /12 = /13 = Tﬁnal'

General iteration procedure

Procedure 1 (1) Level-1 iteration
Step 1.1 Initialization: Calculate p;, i € X, and T, using the results in Xie et al.
(2012). Set j = 0 and

0}
kl_pkl 0.

Step 1.2 Update T]Y f and p](f)l.: For patient 1,
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(I+1)

1 Jint

g+ _
Lint —

G+ _

1,res

(I+1)

l Jrrt

G+1) _
T el
G+ _
Pl =
(I+1)
1 amm

G+ _

latm —

For patientk =2, ....,m

(I+l)
kmt
G+1)
pk int
(I+1)
kres

G+1)
pk res
G+ _

Tk, rrt

(1+1)
k rrt

L0+
Th fel
Pl =
e =
Pl =
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n
Td + Z zp, mt(pmtrmt + prrt&mtTrrt&mt)
G+D)

mt Tint +prrt&mt rrt&znt)/Tl int ’

Td + Zl 2p, res (pres res +prrt&resTrrt&res)’
G+

1,res °

= (prey res +prrl&mqfrrt&rev)/f

n
Td + 2 2[7 i, rr,(prrtTrrt +p rrt&int Trrt&int +p rrt&res Trrt&res

+p rri&fel Trrt&fel +p rrt&atn Crrt&atn )’

2 2 2
(prrz rrt +prrl&intTrrt&int +prrt&resrfrl&fm

G+1)
1rrt 2

“)

+ p rri&fel rrt&fel +p rrt&atn rrt&atn)/ T

=T, +Z_,p; fez(Pfeszez + Drrisel Crrigefel)s
G+D)

1fel >

Td + Zn 2p, am(patn atn + prrt&atnTrrt&atn)’
G+1)

latn *

(pfeleEl + Pm&fez rrt&fel)/ T

atn Tatn +prrt&am rrt&atn)/T

-1,
k—1 (I+1) m )
=T;+ (Z 1P int Zi:k+1p,’,im “PintTint + PrreseintCrreseint)»
G+
(pmt int +prrt&mt ”‘f&mf)/ kmt ’

k—1_(+1) m
Td (Z lplrey +E k+1p, res) (prev rev+prrt&res1rrt&rex)’
(+D
(pres res +prrt&rev rrt&rev)/ Tkores

prD 4w

lrrt

+p rri&res Crrt&eres +p rri&fel Trrt&fel +p rrt&atn Trrt&utn) ’

(p 2

2 2 2
vrt Frrt +p rri&int Crri&int +p rr&eres Lrrt&res +p rrt&f'elTrrt&ffl
+ prrt&atnT”’l&“m)/Tk rrt ?

G+1)
k—1_G+1)
=T, + (=l
(pfeleel +prrt&fel rrl&fel)/

(Zk 1,G+D

lp iatn
atn Tam + prrt&atn rrt&uz‘n)/

—k+1P; m) “PriTert F Prriseint Trrseing

(&)

+ Zm k+1pz,fel) (pfeleel + prrt&felTrrt&fel)

(+1)

kfel ’

Em k+1p, atn) (pam amn + Prri&ain Trrt&am)’

G+
katn :
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For patient m,

(/+1) m—1,(G+1)
m int Td Z =1 p, int (pintTint + prrt&intTrrt&int)’

2
G+ _ pmt int prrt&intT”f&im

p myint G+1) ’
T
k,r
G+1) _ T + Zm 1 (]+1)(p + )
Tm,rev - =1 p ires resTres T Prri&resTrri&res)s

G+ _ G+1)
pm,res (pres res +prrt&resTrrl‘&res)/Tk,res ’

G+1) — Td Zm 1 (]+1)

g = , rrt rrt Crrt +p rri&int Trri&int +p rri&res Trri&res

n,rrt
+p rr&fel Trrt&fel +p rrt&atn Trrt&atn)’ (6)
G+ _ 2 2 2 2
Py = (prrt et Drigeint Frrisint +prrt&resTth&V€X +prrt&felTVft&f€l

G+
+ prr;&a;nfrrt&atn)/Tm,rrt >

G+ _ 1, G+D)
Tonfel — T,+Z" 'p; el PreiTrer + Prrisefer Trrescfel)s

G+ _ g+1)
Pofer = (pfelff +p; rre&efel ¥ rrt&fel)/ el *
G+ _ (j+1)
Tm atn — Td , 1 p, am (pam atn +prrt&atnrrrt&atn)’

G+ _ G+1)
pm atn (pam atn + prrt&atn rrl&atn)/ m amn:

Step 1.3 Tteration: Set j = j + 1. If the terminating criteria is not met, go back to Step
1.2. Let 6 = 1072, the Level-1 iteration is finished if

G+1) (®)] (+1) ®)] s
|z —ri’r|§6, |pl.’r —pi,r|§6, i=1,2,...,m.

Lr

Step 1.4 Termination: If the stopping conditions are met, set

(/+1) =T G+ _ p

tr r pi,r —r

Tin = Td + Zr,reXPrTr'

i=1,....,m,

)

(2) Level-2 iteration
Step 2.1 Initialization: Set/ = 0 and

V=0, V=T,

1 in

Step 2.2 Update p]({l) and A]((l): For patient 1,

@ Springer



64 Z.Zengetal.
/1(114'1) (1 +p(l)2m (l))’
(I+1)
S 4 (®)
1 (+1)
)’1 + Tnormal
For patientk =2,...,m—1,
/1(1+1) (1 +p(l)(2k 1 (l+1)+zl ka(l)))’
(I+1)
(I+1) _ /lk &)
ko T+
A’k + Tnormal
For patient m,
+1) _ Om—1 (+1)
/lm —T(l+p lep ),
(+1)
p(l+1) _ /lk (10)
m (I+1)
)'m + Tnarmal

Step 2.3 Tteration: Set/ = [ + 1. If the terminating criteria is not met, go back to Step

2.2.

A0 <5 1 0 <5, s,

Step 2.4 Termination: If the terminating condition is met, set

1+1 1+1 .
AV =2, MV =p N=Th i=1,..
Appendix 2: Proofs

To prove Proposition 1, Lemmas 1 and 2 are needed.

Lemma 1 Under assumptions (1)—(5), when m =2, if p
+1) ) G+ Y G+ ) +1)
j=1,2,.., then r(’ > T(] (ll,r p({r Tgr < rgr pzr
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Lemma 2 Under assumptions (1)—(5), when m =2, the sequences pl and 1
are monotonically decreasing, while the sequences pz) and T % . are monotomcally
increasing.

Proof of Lemma 1 From all the equations related to the update of 1 and p(’) which
are from (4) to (6), define C, , and C, , as constants related to resource r,r€X. We
have

-

PintTint +prrt&int7rrl&inl’ ifr= wnt,
PresTres + Prri&eres Crrt&res ifr= res,
PrrtTrrt + Prriseint Trrt&eint

Cl,r =4 tP rri&res Frri&res
+p rrt&felTrrt&fe[ +p rri&am Crri&am ifr=rrt >

PreiThet T+ Pressfel Trrisefel if r = fel,
PamnTam +p rrt&atn Crri&atn if r =am.
2 . .
pml int prr[&l‘mrrrt&im’ ifr= nt,
2 2 : _
DresTres +prrt&resT”’f&r€S if r = res,

2
prrt rrt +prrt&mt rri&int

CZJ’ =4 1P rr1&eres Lrri&res 5 .
+p"”&f€lrr”&fgl +prrt&atn7rrt&atn if r =rrt,

2 2 3 —
pfeleel + prrt&fe[frrt&fel ifr= fel’
2 2 3 —
pumTam +prrt&atnT”’l&am if r = am.
For iteration j, if p2 > p(zl Y. then for patient 1:
0 _ (=D (1+1)
Tl,r_Td +p27r Cl,r< T, +p2 C T, o (11D
() — Cl,r Cl,r — (G+1)
1,r @) G+1) pl,r : (12)
1,r 1,r
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This leads to, for patient 2,

) _ G+1) (/+l)
Tg,—Td+P1,C1r>Td+P1 Ci,=17, (13)
C C .
) 2,r 2r (4D
Py =70 < Gy P (14)
T
2,r 2.r
The obtained results in the above four inequations complete the proof. O

Proof of Lemma 2 Induction is used for the proof of the lemma.
Initial Step: When j = 1, since p(zoi = 0, from Eq. (14), we have

(1 ©0)
p2r>p2r 0.

Then, from Lemma 1, we obtain

(2) (1) (2) (1)

2) D (2) (1)
>T plr plr 12,r<7'-2,r’ p2r p2r

The base case is proved.
Inductive Step: Assume when j = k, we have

(k+ 1) (k) (k+ 1) (k) (k+1) (k) (k+1) (k)
lr >Tl,r’ plr plr TZ,r <72,r’ p2r >p2r

From Lemma 1, this leads to

(k+2) (k+1) (k+2) (k+1) L) (k+1) (k+2) (k+1)
Tl,r >Tl,r ’ plr <plr ’ 2r <12,r ’ er >p2r .
Thus, the case of j = k + 1 also holds.
By induction, we obtain that, when m = 2 the sequences p ) and ’l' are mono-
tonically decreasmg, while the sequences p , and T(]) , are monotonlcally increas-
ing,reX,j=12,.. O

Proof of Proposition 1 From Lemma 2, we obtain the monotonicity of decreasing
sequences p1 and r and increasing sequences p2 o and Tl o TEX, J=12,.
Next we show that the sequences T(]) and p , are bounded from above and below
For p(’)s from Eqgs. (12) and (14), We have

0<p” <1

For rl.(’:s, from Egs. (11) and (13), since 0 < pf’; < 1, we obtain
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T, <t <T,+C,.

Since the sequences r ) and p(’), reX; j=1,2,..., are monotonic and bounded
from above and below, they are convergent. Thus, Level-1 iteration is convergent.

To prove Proposition 2, Lemma 3 is needed.

Lemma 3 Under assumptions (1)—(5), lfp(l) > p(l b ,i=1,....m,[=1,2,.., then

I+1 l
p( ) > p()

L

Proof of Lemma 3 From Eq. (8), we obtain

/1(114'1) (1 +p(l)2m2p(l)) >T (1 +p(l 1)27}1 (l 1)) — /1(1/).

This implies that

3+
@) _ 4 1 S 1 0
T T Dema ] L 01
1 + normal + <1+1) +

When 2 < k <m — 1, from (9), we have

I+ _ ) [ sk—1 (l+1) U]
A =T, 0 (B o)

l

(=1 ( sk-1 (D (-1)
T, (1 + o (2 PO+ )

— ;0
_,1](,

(I+1)
W+ _ A S 1 %)

k T+ Pk
i; )+ Tn()rmal 1+ »xmmal
k

Finally, for kK = m, from (10), it follows that

A0 <1+p(1)2m <1+1)> ST, <1+p(1 Dyl (’>> =20
m

m m’

(+1)
1) _ __*m > 1 0)
P = T T P
/lm + Tnormal I+ /1(1—1>
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The arguments follow directly. O

Proof of Proposition 2 First we prove that the sequences /15[) and pl(.l), i=1,2,...,m;
I =1,2, ..., are monotonically increasing using mathematical induction.
Initial Step: When / = 1, since p[(p) =0, from Lemma 3,

1 0
pg ) > pg ) = 0.
This leads to
2 1 2 1
R R R}

The base case is proved.
Inductive Step: Assume when [ = k, we have

D A A = I

Then from Lemma 3, we have

/lﬁk+l) S ﬁf»k), p(k+1) > p
Therefore, the case where [ = k + 1 also holds. Then, the sequences /15[) and pgl),
i=1,2,....,m;l=1,2,..., are monotonically increasing.
For boundedness itis clear that p )s are bounded between 0 and 1 from Egs. (8),
(9), and (10), while /1( )s are also bounded accordlng to equations (8) and (9).

Since the sequences /1( ) and p(]) i=1,2,...,m, are both monotonic and bounded
from above and below, they are convergent. O
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