Zeng et al. Genome Biology (2022) 23:83 H
https://doi.org/10.1186/513059-022-02653-7 G e n O m e B I O | Ogy

e : : ®
Statistical and machine learning methods =

for spatially resolved transcriptomics data
analysis

Zexian Zeng'?*3t Yawei Li*', Yiming Li*" and Yuan Luo**%”

*Correspondence:

yuan.luo@northwestern.edu Abstract
Zexian Zeng, Yawei Li and The recent advancement in spatial transcriptomics technology has enabled multi-
Yiming Li contributed equally | d fl f cellul . q ial | . As th . q
to this work plexed profiling of cellular transcriptomes and spatial locations. As the capacity and
# Division of Health efficiency of the experimental technologies continue to improve, there is an emerging
and Biomedical Informatics, need for the development of analytical approaches. Furthermore, with the continuous
Department of Preventive uti f . s th derlvi . f Ivtical
Medicine, Northwestern evolution of sequencing protocols, the underlying assumptions of current analytica
University Feinberg School methods need to be re-evaluated and adjusted to harness the increasing data com-
ggg/‘]e]d&“:r Chicago, IL plexity. To motivate and aid future model development, we herein review the recent
Ful list of author information development of statistical and ma;hmg learning methods in spatial tran;c;nptomms,
is available at the end of the summarize useful resources, and highlight the challenges and opportunities ahead.
article

Introduction

In unicellular and multicellular organisms, arranged cells work collaboratively in intact
tissues. Spatially resolved transcriptomics performs high-throughput measurement of
transcriptomes while preserving spatial information about the tissue context and cellu-
lar organizations [1-8] [spatial transcriptomics technologies were reviewed in [9-12]]
(Fig. 1A). In the past decade, the rapid development of spatial transcriptomics tech-
nology has facilitated biological discoveries in different domains [4, 13-15]. Spatially
resolved transcriptomics enables us to study cell transcriptomes in the context of cel-
lular organizations. This additional dimension of spatial information has shown its
efficacies in providing us with a novel perspective on the cellular transcriptome [suc-
cessful applications of spatial transcriptomics for biological discoveries were reviewed
in [16, 17]]. Meanwhile, advances in spatial transcriptomics have increased the data
volume and complexity and introduced new challenges for data analysis (Fig. 1B). The
recent development of computational approaches has created new effective paradigms
for analyzing high-dimensional data, e.g., in single-cell RNA-seq (scRNA-seq) research
[18]. Likewise, there has been much progress in the field of method development for
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Fig. 1 Applications of computational approaches in spatial transcriptomics research. A Spatially

transcriptomics data retains spatial information, it is compromised with low cellular resolution and read
coverage. B Computational approaches capable of harnessing the complexity of spatial transcriptomics
data have been developed for applications of localized gene expression pattern identification, spatial
decomposition, gene imputation, and cell-cell interaction. Some of these models leverage gene expression
profiles from single-cell RNA-seq (scRNA-seq) data or prior ligand-receptor information from relevant
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ScRNA-seq and spatial transcriptomics data are complementary to each other, and
each has its unique properties and strengths. Protocols for scRNA-seq have achieved
high-throughput gene expression profiling. Although information about the cellular spa-
tial location is lost during cell preparation (Fig. 1C), the lost information has the poten-
tial to be reconstructed by leveraging the gene expression patterns of the cells. On the
other hand, spatial transcriptomics retains spatial information, but majority of the data
is neither transcriptome-wide in breadth nor at cellular resolution in depth. For example,
when a sequencing capture location is larger than an individual cell, gene expressions
measured at that capture location will be from a mixture of multiple cells. To solve this
problem, we may adapt the idea of transfer learning, which utilizes knowledge learned
from similar domains where data is more accessible or better labeled [21]. Indeed, by
leveraging both expression profiles from scRNA-seq data and spatial patterns from
spatial transcriptomics data, we can transfer knowledge between the two types of data,
which benefits the analysis of both data types. It has been shown that the integration of
scRNA-seq and spatial transcriptomics data could improve model performance in dif-
ferent research areas, including cell type annotation, cell clustering, spatial decomposi-
tion, gene imputation, cell label transfer, and spatial location reconstruction (Fig. 1B, D)
[the benefits of integrating scRNA-seq and spatial transcriptomics data were reviewed in
[22]].

The main objective of this review is to dissect different problems motivating method
development for spatial transcriptomics, highlight their current solutions, and specify
the underlying assumptions. A spatial transcriptomics data analysis workflow typically
includes multiple phases (Fig. 1E). The first step is data preprocessing, which usually
includes quality control, gene expression normalization, dimension reduction, and cell
type annotation. One may further improve the data enrichment with spatial decom-
position, gene imputation, and label transfer. Next, one could gain biological insights
from the data through spatial clustering and localized gene expression pattern discov-
ery, which could further facilitate the identification of spatially variable genes, inference
of cell-cell/gene-gene interactions, and spatial trajectory analysis. Furthermore, spatial
transcriptomics data can be utilized to help reconstruct spatial locations in the scRNA-
seq data (Fig. 1E). Despite the current successful applications of computational methods
in this workflow, there still exists an urgent need to develop more sophisticated mod-
els to tackle the rising challenges in spatial transcriptomics data analysis. To bridge the
gap between evolving experimental technology and current computational techniques,
we herein survey the applications of computational methods in spatial transcriptomics
and classify them into major categories based on the domain of applications (Table 1).
We begin with the analytical approaches characterizing localized gene expression pat-
terns and performing spatial clustering. We also discuss strategies for improving the
data enrichment, including spatial decomposition and gene imputation (Fig. 1B). Next,
we review computational methods that learn patterns from spatial transcriptomics data
to help reconstruct spatial information for scRNA-seq data (Fig. 1D). Lastly, we focus
on the computational methods that leverage spatial transcriptomics data to aid cell-cell
communication and gene-gene interaction inference (Fig. 1B). We conclude by outlin-
ing the challenges and future opportunities in the field of method development for spa-
tial transcriptomics. We also summarize useful datasets (Additional file 1: Table S1),
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Fig. 2 Model workflow testing independencies between gene expression and spatial locations in spatial
transcriptomics data. A Spatial transcriptomics technology has enabled multiplexed profiling of cellular
transcriptomes and spatial locations. B In spatial transcriptomics data, the transcriptome information

is represented by a matrix with genes as rows and spatial locations as columns. Distances between the
spatial locations are obtained based on their coordinates. C Covariance matrices of gene expressions and
spatial coordinates are calculated based on the gene expression and spatial coordinates, respectively. D

Test of significance on whether the gene expressions are independent of the spatial coordinates using the
covariance matrices. E Model spatial transcriptomics data using graphs, where each node corresponds

to a spatial location, and two nodes are connected if they have proximate locations or similar expression
profiles. Graph convolutional networks can aggregate features from each spatial location’s neighbors through
convolutional layers and utilize the learned representation to perform node classification, community
detection, and link prediction. Extended applications include spatial decomposition, localized expression
pattern identification, and cell-cell interaction inference

baseline methods for benchmark studies (Additional file 1: Table S2), and available data
processing pipelines to assist further investigations. We anticipate that this review will
motivate future method development to address the increasing complexity of spatial

transcriptomics data.

Profiling of localized gene expression pattern

Genes differentially expressed with varying spatial patterns reflect biological functions.
Early approaches of localized gene expression pattern identification include Trends-
ceek [40] and SpatialDE [41]. Trendsceek [40] utilizes the marked point process theory
[65], in which spatial locations are represented as points and expression levels as marks.
For a given gene, Trendsceek [40] tests whether the distributions of the gene expres-
sion (mark) are conditionally dependent on the spatial location (point). The significance
of the dependency is assessed through a resampling procedure, during which gene
expressions are permutated between spatial locations to generate the null distribution.
For a given gene, SpatialDE [41] utilizes Gaussian process regression to decompose the
expression variation into a spatial component and a non-spatial component. Specifically,
the spatial component of the expression variation is modeled by the spatial covariance
matrix based on the pairwise spatial distances among locations (Fig. 2A—C), and the
non-spatial component is formulated as a noise term. To perform significance testing,
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SpatialDE [41] compares the likelihood of its full model with the likelihood of a null
model without the spatial component. Similar to SpatialDE [41], SPARK [42] is a genera-
tive model with a variety of kernels to detect genes with spatial variation. A Poisson link
is used in the generalized linear model as the authors reasoned that spatial gene expres-
sion data is often present in the form of counts. In addition, SPARK [42] computes p-val-
ues using each of the kernels and utilizes the Cauchy combination rule [66] to combine
the p-values. Using this approach, SPARK [42] produces well-calibrated p-values to con-
trol type I errors. A common drawback for Trendsceek [40], SpatialDE [41], and SPARK
[42] is their high computational complexity, which hinders these methods from being
readily applicable to large-scale high-throughput spatial transcriptomics data. Although
SpatialDE [41] and SPARK [42] are more efficient than Trendsceek [40], the computa-
tional complexity of these two methods [41, 42] still scales cubically with respect to the
number of spatial locations. To reduce computational burden, SPARK-X [44] proposes a
scalable non-parametric model using the following algebraic manipulations. For a given
gene, SPARK-X [44] first builds a covariance matrix for the gene expression and a covari-
ance matrix for the spatial coordinates (Fig. 2C). Intuitively, if the gene expressions are
independent of the spatial coordinates, the product of the two covariance matrices will
be small. Conversely, if the gene expressions are not independent of the spatial coor-
dinates, the product of the two matrices will be large. This product is assumed to fol-
low a mixture of chi-square distributions which allows for significance testing (Fig. 2D).
A common theme of these approaches [40—42, 44] is that they all test whether adding
a spatial component to the covariance could significantly improve their ability to iden-
tify spatially variable genes. We noted that SpatialDE2 [67] unifies the mapping of tissue
zones and spatial variable gene detection as integrated framework.

With the common goal of identifying spatially variable genes, multiple machine learn-
ing algorithms have been proposed to examine the spatial transcriptomics data from
different angles. sepal [45] explores the alternative solutions to hypothesis testing and
assesses the degree of randomness exhibited by the data. Specifically, sepal [45] simu-
lates diffusions of the gene expressions in the spatial domain and models the expres-
sion diffusion with Fick’s second law to measure the time of convergence. In this context,
sepal [45] assumes that genes with spatial patterns will demonstrate a lower degree of
randomness (diffusions) and a higher degree of structure. Therefore, compared to genes
with a uniform pattern across different spatial locations, transcripts following structured
patterns require more iterations for the gradient algorithm to converge [45], and a long
convergence time of the system is indicative of a structured spatial pattern. On a sepa-
rate note, graph-based methods have shown their efficacies in studying spatial variable
genes as they could, for each node, aggregate information from its neighbors. SpaGCN
[68] is a graph convolutional network (GCN) approach that integrates gene expression
data, spatial location information, and histology images to identify genes with spatial
patterns. The core of GCN is its graph convolutional layer, which enables it to combine
graph structure (cell location and neighborhood) and node information (gene expres-
sion in the specific cell) as inputs to a convolutional network. When applied to spatial
transcriptomics data, GCN could aggregate feature information from each cell/loca-
tion’s adjacent cells/locations through the convolutional layers and improve model per-
formance. In SpaGCN [68], the spatial locations are used as nodes in the input graph
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and are connected via edges weighted by the relatedness between different locations.
The relatedness is measured by physical distance and histology similarity between spa-
tial locations. Specifically, the histology relatedness is measured based on pixel color
similarities. Through graph convolution and clustering, SpaGCN [68] next aggregates
expression and relatedness information and clusters the spatial locations into domains
based on the aggregated profiles. GLISS [46] is another graph-based method that con-
structs a mutual nearest neighborhood graph from spatial coordinates and relies on a
graph-based feature selection procedure to select spatially variable genes. Similar to
SpaGCN [68], GLISS [46] constructs a neighborhood graph from the spatial coordi-
nates, with each node representing a spatial location. In the graph, two nodes will be
connected if they are spatially proximate to each other. Specifically, GLISS [46] calcu-
lates the graph Laplacian score to measure the relationship between the gene expression
and the constructed graph. The graph Laplacian scores are always non-negative, and
small scores indicate strong dependencies of the gene expression on the spatial coordi-
nates. Lastly, GLISS [46] performs significance testing through permutations, in which
gene expression is randomly shuffled to generate the null distribution. To summarize,
in the proposed graph-based models [46, 47, 68], it has been observed that aggregating
feature information from each node’s neighbors improves the identification of localized
gene expression patterns and, consequently, spatially variable genes.

Spatial clustering

The profiling of localized gene expression patterns is closely related to delineating spa-
tially connected regions or clusters in a tissue based on expression data [69]. Indeed,
spatial clustering is a critical step when performing exploratory analysis of spatial tran-
scriptomics data, which may help reduce the data dimensionality and discover spatially
variable genes. Standard clustering methods designed for scRNA-seq data were often
based on gene expression levels, whereas spatial clustering requires us to take spatial
information into account. To profile localized gene expression patterns, stLearn [30]
first normalizes the expression data by smoothing the expression values in each capture
location upon information aggregated from its neighbors and is weighted by the mor-
phological similarity between capture locations. The capture locations are next clustered
using standard algorithms such as k-means, and spatial information is used to refine
the cluster results by merging subclusters from expression-driven clusters that are split
across multiple spatially separated locations [30]. Inspired by contextual image classifi-
cation methods, MULTILAYER [61] evaluates each gene’s differential expression level
by comparing it to the average expression in the whole tissue and applies hierarchical
agglomerative clustering to identify the gene expression patterns. These patterns are
represented by nodes in a graph, in which the edges are weighted by the similarities of
gene patterns [61]. Tissue communities are next detected by applying Louvain cluster-
ing to the graph [61]. There are also examples that utilize Markov random fields (MRF)
to incorporate spatial information when performing spatial clustering. Zhu et al. [47]
utilize hidden Markov random fields (HMRF) to identify spatially variable domains. The
authors first construct a neighborhood graph to represent the spatial relationship among
the capture locations. In this work, the cell states depend on the label of their immediate
neighbor nodes. The model also incorporates a term to compare the expression of a cell
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to the different clusters. Therefore, the HMRF model forces the clusters to be coherent
both in physical and gene expression space. The authors leverage HMRF to decompose
the graph into multiple components, and each component represents a spatially variable
domain [47]. In another work, BayesSpace [48] employs a Bayesian approach and impose
a prior to assign higher weights to spatial locations that are physically closer. However,
the performance of BayesSpace [48] might be limited by its fixed smoothing parameter
of the MRE. Moreover, it is not computationally scalable for high-throughput spatial
transcriptomics data since the Markov chain Monte Carlo (MCMC) part is computa-
tionally intensive [48]. To address these drawbacks, SC-MEB performs spatial clustering
through an empirical Bayes approach capable of optimizing the smoothness parameter
[59]. The gene expression at each capture location is assumed to be Gaussian given an
unknown cluster label, and the prior of the hidden labels encourages spatial smoothness
by penalizing the assignment of neighboring capture locations to different clusters [59].
SC-MEB estimates its parameters using an iterative-conditional-mode-based expecta-
tion-maximization method to boost its computational efficiency and scalability to high-
throughput data [59]. Another strategy for spatial clustering is to perform graph-based
clustering using both gene expression profiles and spatial features. For example, STA-
GATE [60] is a graph attention auto-encoder framework capable of identifying spatial
clusters. It first constructs a neighborhood graph of the capture locations and prunes the
graph based on the clustering of gene expressions [60]. The similarity between neighbor-
ing capture locations in the spatial graph is estimated by an attention layer, and clus-
tering results on the inferred latent embeddings can then provide us with informative
spatial domains [60]. In addition, as discussed in the previous section, SpaGCN is a
GCN-based method capable of integrating gene expression, histology images, and spa-
tial coordinate data [68]. In SpaGCN, spatial clusters are identified through clustering
the output of the graph convolutional layer [68].

Spatial decomposition and gene imputation

When a capture location is larger than an individual cell, its measured gene expres-
sions may be from a mixture of multiple cell types as the capture location overlaps
with multiple cells. For example, the capture locations of Visium, a widely used micro-
array-based spatial transcriptomics technique, are ~ 55 pum in diameter. This is often
larger than a typical cell size (around 5-10 um). Therefore, an important preprocess-
ing step is to estimate the proportions of different cell types in each capture location
using spatial decomposition algorithms, which is similar to the concept of cellular
deconvolution. Traditionally, cellular deconvolution commonly refers to estimat-
ing the proportions of different cell types in each sample based on its bulk RNA-seq
data. Theoretically, methods designed for bulk RNA-seq data deconvolution could be
adopted for spatial transcriptomics data [methods for bulk RNA-seq deconvolution
are benchmarked in [70, 71]]. DWLS [72] is a tool developed for bulk RNA-seq data
deconvolution. As an extension of DWLS [72], spatialDWLS [23] was proposed for
spatial transcriptomics data decomposition. Leveraging cell type signatures derived
from scRNA-seq data, spatial DWLS [23] performs gene signature enrichment to infer
cell types that are likely to be present at each spatial capture location. Next, spatialD-
WLS [23] utilizes a weighted least squares approach to infer cell type composition
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Fig. 3 Leveraging expression profiles from scRNA-seq data and spatial patterns from spatial transcriptomics
data benefits the analysis of both types of data. A In sequencing protocols where the size of the capture
location is larger than a cell, multiple cells are profiled as a mixture. Cell type-specific expression profiles
derived from scRNA-seq data can be used to estimate cell type proportions at different capture locations.

B With both scRNA-seq and spatial transcriptomics data projected to and clustered in a common latent
space, complementary information from one type of data can be used for imputing features missing from
the other type, for instance, spatial pattern prediction for scRNA-seq data and gene imputation for spatial
transcriptomics data. C Graphs can next be constructed based on the feature similarities in the latent space,
allowing downstream graph-based methods such as graph convolutional networks. UMAP, uniform manifold
approximation and projection

in each spatial location using the derived signatures (Fig. 3A). To analyze Slide-seq
data, Rodriques et al. [6] propose to utilize non-negative matrix factorization (NMF)
to derive metagenes from the scRNA-seq data. With gene signatures representing
each cell type inferred, the authors further leverage non-negative least square (NNLS)
regression to map scRNA-seq cell types onto Slide-seq data. Likewise, SPOTlight [24]
was proposed to utilize scRNA-seq data and NMF for spatial decomposition. Using
signatures derived from scRNA-seq data, SPOTlight [24] utilizes NNLS to decom-
pose the spatial transcriptomics data and derive the coefficients for each cell type. The
coefficients derived from the NNLS models represent cell type proportions since each
coefficient corresponds to a specific cell type. It is worth noting that spatialDWLS,
NNLS, and SPOTlight all use the non-negative least square regression or its variants
to deconvolute the spots of spatially resolved transcriptomics data, and a major differ-
ence between them is the strategy of constructing the gene signature matrix. Another
spatial decomposition method, RCTD [25], leverages cell type profiles learned from
scRNA-seq data to decompose cell mixtures for spatial transcriptomics data. RCTD
[25] first derives gene expression profiles for each cell type from the scRNA-seq data.
For a given capture location, its total transcript count is the summation of transcripts
from multiple cells. Using transcript counts as the output and each cell type’s expres-
sion profiles as input variables, RCTD [25] infers cell type proportions using max-
imum-likelihood estimation. stereoscope [26] also utilizes expression profiles from
scRNA-seq data and estimates cell type proportions probabilistically (Fig. 3A). Spe-
cifically, stereoscope [26] assumes that spatial gene counts follow negative binomial
distribution.

A more recent approach, DSTG [27], utilizes a semi-supervised GCN to decompose
cell mixtures in spatial transcriptomics data. DSTG [27] first performs canonical cor-
relation analysis (CCA) to project both scRNA-seq data and spatial transcriptomics

Page 11 of 23
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data to a common latent space, and performs k-nearest neighbor (KNN) to identify
mutual nearest neighbors and to construct a link graph. In the constructed link graph,
two nodes are connected if they are mutually nearest neighbors (Fig. 3B). Since the
cell types in scRNA-seq data are already known, this problem can be formulated as a
semi-supervised learning problem, in which DSTG [27] predicts unknown cell pro-
portions for each capture location. Other approaches have been proposed for spa-
tial decomposition, for example, a recent method named Tangram [57]. Tangram
[57] is an optimization-based approach to align scRNA-seq data onto different spa-
tial transcriptomics data by enforcing the similarity between the two data types. It is
worth noting that Tangram [57] is compatible with capture-based and image-based
spatial transcriptomics data. A recent approach, Cell2location [58], is a hierarchical
Bayesian model that maps the spatial distribution of cell types by leveraging infor-
mation from scRNA-seq data. Cell2location [58] was systematically evaluated against
other alternative methods, including stereoscope [26], Seurat [33], RCTD [25], NNLS
(Autogenes) [73], and SPOTlight [24]. It was reported that Cell2location [58] out-
performed these methods substantially in detecting the presence of cell types across
locations. In sum, current spatial decomposition methods [23-26] aim to learn cell
type-specific marker genes or gene signature representations from scRNA-seq data.
With the derived cell type signatures, the probability of cell type mixtures in each cap-
ture location can be inferred through maximum likelihood estimation. Likewise, gene
marker-based approaches have also been utilized to identify and map cell subpopu-
lations across tissue regions [74]. It is also worth noting that sequencing protocols
and efficiency are different across scRNA-seq and spatial transcriptomics platforms.
Therefore, data from these two platforms might have different underlying distribu-
tions. When integrating data generated by different platforms, platform effects need
to be accounted for, as has been done in [25].

Gene imputation is another major task to improve the quality of spatial transcriptom-
ics data. Some spatial transcriptomics techniques have high capturing resolution, but
they only sequence a small fraction of genes out of the entire transcriptome. For exam-
ple, previous versions of MERFISH may achieve single-cell resolution, but could only
sequence around 1000 genes [3]. Hence, to improve the quality of spatial transcriptom-
ics data, one could impute the missing genes when performing data preprocessing. Since
information from scRNA-seq data and spatial transcriptomics data are complemen-
tary to each other, the missing spatial gene expressions could be imputed by utilizing
knowledge from scRNA-seq data. Some methods developed for spatial decomposition
also have the gene imputation function, for example, Tangram [57]. For gene imputa-
tion purposes, gimVI [37], a neural network model, was proposed to integrate spatial
transcriptomics data and scRNA-seq data for missing gene imputation. gimVI [37] is
extended from scVI [75] and based on a hierarchical Bayesian model with conditional
distributions specified by deep neural networks. Specifically, this latent representation is
decoded by one additional non-linear transformation to generate a posterior estimate of
the distributional parameters of each gene in each cell. gimVI [37] and scVI [75] incor-
porate the conditional distribution to take platform effect into consideration. In terms of
aggregating scRNA-seq data and spatial transcriptomics data, gimVI [37] and scVI [75]
differ from other methods in their non-linearity, as many other methods are dependent
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on linear models. Of note, gimVI [37] reasons that distributions of gene expression are
platform-specific. It assumes a zero-inflated negative binomial (ZINB) distribution for
scRNA-seq measurements, a Poisson distribution for single-molecule fluorescence
in situ hybridization (smFISH) [3] measurements, and a negative binomial distribution
for spatially resolved transcript amplicon readout mapping (starMAP) [76] measure-
ments. To embed scRNA-seq data generated from different batches to a common latent
space, Harmony [38] projects cells to a shared embedding with reduced dimension
through iterations of maximum diversity clustering and mixture-model-based linear
batch correction. In one of its applications, Harmony [38] projects scRNA-seq data and
spatial transcriptomics data to a common latent space (Fig. 3B). Leveraging the embed-
dings in the latent space, Harmony [38] utilizes KNN imputation to predict gene expres-
sions for spatial transcriptomics data based on their nearest scRNA-seq data neighbors.
Similar to Harmony [38], other tools including LIGER [34], Seurat [33], and SpaGE [35]
also rely on joint dimension reduction methods to project scRNA-seq data and spa-
tial transcriptomics data to a common latent space before performing gene imputation
(Fig. 3B). Specifically, LIGER [34] utilizes NMF, Seurat [33] utilizes CCA, and SpaGE
[35] uses both principal component analysis (PCA) and singular value decomposition
(SVD). Different from gimVI [37], which utilizes a non-linear deep generative model,
Harmony [38], LIGER [34], Seurat [33], and SpaGE [35] utilize linear models to learn
embeddings. Similar to these methods [33-35, 38], stPlus [36] also aims to identify a
common latent space by performing joint embedding projection with an auto-encoder
and predicting spatial gene expression based on the cells’ neighboring scRNA-seq pro-
files after weighted KNN clustering. In summary, a common strategy for gene imputa-
tion is to embed both scRNA-seq data and spatial transcriptomics data into a common
latent space for cell clustering (Fig. 3B). With the scRNA-seq cells and spatial transcrip-
tomics locations embedded, the general process of spatial gene imputation is to integrate
information from neighboring scRNA-seq cells for each of the spatial transcriptomics
locations. Common latent space construction is one of the most important steps in gene
imputation. As discussed in previous sections [43, 46—48], graph-based methods inte-
grating features from neighboring cells could enhance the identification of genes with
localized expression patterns. Therefore, the application of graph-based methods may
improve the imputation of spatial genes (Fig. 3C).

The computational methods developed for spatial decomposition and gene imputation
are largely dependent on the integration of scRNA-seq data and spatial transcriptomics
data. Joint dimension reduction methods have been commonly used for this data inte-
gration purpose. A typical workflow for joint dimension reduction is to project multiple
datasets to a common latent space based on feature similarities (Fig. 3B). With multiple
datasets projected and clustered, complementary information from the other datasets
could be used. For example, optimal transport algorithm [77] has been used in spa-
tial transcriptomics data analyses [55, 56] as it could derive a probabilistic embedding
to minimize the discrepancy between the shortest path lengths in expression data and
spatial data. The integration of scRNA-seq data and spatial transcriptomics data could
improve data quality in many other ways. For example, Qian et al. developed a Bayes-
ian model to leverage scRNA-seq data to estimate the probability of assigning each read
to each cell and each cell to each class for transcriptomics data [78]. This is a typical



Zeng et al. Genome Biology (2022) 23:83 Page 14 of 23

use case of cell label transfer from scRNA-seq data to spatial transcriptomics data to
assist cell type annotations. As part of the analysis workflow, cell type annotation is a
major task to determine the cellular composition of complex tissues and organisms.
The exponential growth in the number of cells and quality of scRNA-seq has prompted
the adaption and development of computational approaches to transfer cell labels from
scRNA-seq data to spatial transcriptomics data. Typically, the label transfer is performed
in different ways. One could first learn gene markers or gene signatures representing cell
types from the scRNA-seq data, and then computationally infer the cell types for spatial
transcriptomics data by enrichment studies. Alternatively, one could integrate scRNA-
seq and spatial transcriptomics data and compute their similarity to perform cell type
annotation for spatial transcriptomics data, as in gimVI [37], Seurat [50], Tangram [57],
and others.

To further improve the quality of spatial transcriptomics data, methods have been
developed to leverage other data types in addition to scRNA-seq data. For example,
xFuse [49] is a deep generative model that integrates in situ RNA capturing data with
histology image data to infer transcriptome-wide expression maps. The quantification
of gene expression both within and between the original capture locations enhances
the resolution of spatial transcriptomics data. HistoGene [62] is another deep learning
model to leverage information learned from spatial transcriptomics data to predict gene
expression for tissue sections where only histology images are available. HistoGene [62]
outperforms other approaches that were designed to predict gene expression profiles
from whole-slide images, including a multilayer perceptron-based method HE2RNA
[79] and a supervised convolutional neural network-based approach ST-Net [80].

Spatial location reconstruction for scRNA-seq data

The integration of scRNA-seq data and spatial transcriptomics data made spatial gene
imputation possible. Likewise, spatial information derived from spatial transcriptom-
ics could help reconstruct spatial information for scRNA-seq data. Researchers have
proposed different computational approaches to reconstruct the spatial organization
of scRNA-seq data based on information from spatial transcriptomics data. In one of
the applications, an early version of Seurat (v1.0) [50] predicts cellular locations for
scRNA-seq data by referring to a small set of in situ hybridization data. From the in situ
hybridization images, Seurat [50] first generates a reference map with 47 genes that are
characteristic of certain spatial locations. Based on this reference map, Seurat [50] pro-
jects scRNA-seq cells to spatial locations with a probabilistic score using a bimodal mix-
ture model (Fig. 3B). Similar to Seurat [50] which uses binarized in situ hybridization
data as the reference, Achim et al. [54], DistMap [52], and others [81, 82] reconstruct
cellular locations for scRNA-seq data using scoring systems that measure the similarity
between spatial transcriptomics and scRNA-seq data. Peng et al. [53] propose to project
scRNA-seq data to spatial locations using a reference map composed of 158 spatially
variable genes through Spearman rank correlation. Specifically, the 158 variable genes
are obtained by analyzing a small set of anatomically defined spatial transcriptomes of
the mouse epiblast. These early approaches for spatial reconstruction often start by con-
structing a reference map or deriving maker genes from low-throughput in situ hybridi-
zation data. With the constructed reference map or signature, the scRNA-seq data could
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then be projected to the maps using correlation-based methods. For example, GLISS
[46] uses lists of reference genes as prior knowledge and performs spatial location impu-
tation for scRNA-seq data. With the advent of sequencing protocols for both scRNA-seq
and spatial transcriptomics, more high-throughput data are being generated. DEEPsc
[39] is a neural network-based classifier to predict spatial location for scRNA-seq data
using integrated scRNA-seq and spatial transcriptomics data as input. With the model
trained, DEEPsc [39] could take as input the feature vector from a single cell and predict
its likelihood of spatial locations.

In situations where spatial transcriptomics data are not available for particular
domains or diseases, methods have been developed to reconstruct the spatial organi-
zations de novo for scRNA-seq data with no reliance on spatial transcriptomics data.
novoSpaRc [56] was proposed to infer the location distributions for scRNA-seq data.
Specifically, novoSpaRc [56] formulates the question as an optimization problem using
the generalized framework of optimal transport [77]. To start, novoSpaRc [56] first cal-
culates the shortest path lengths for each pair of cells from a KNN graph, which is con-
structed by correlation-based distances from the scRNA-seq data. When projecting the
scRNA-seq data to spatial locations, novoSpaRc [56] aims to find a probabilistic embed-
ding that minimizes the discrepancy between the shortest path lengths in expression
data and spatial data. Intuitively, if two cells are close expression-wise, they are expected
to be embedded into proximate spatial locations. Notably, in the cases where a reference
map is available, novoSpaRc [56] could utilize this prior knowledge by adding a penalty
term to minimize the discrepancy between the expression profiles of embedded single
cells and values from the reference map. SpaOTsc [55] utilizes a similar framework as
novoSpaRc [56] by solving an optimal transport problem [77] and has systematically
benchmarked the method with more datasets. In particular, SpaOTsc [55] changes the
penalty term from entropic regulation to unbalanced transport [83] to handle the unbal-
anced sample size between scRNA-seq data and spatial transcriptomics data. In order to
project spatial locations to scRNA-seq data without the need for spatial transcriptomics
data, CSOmap [51] assumes that cells likely to interact tend to locate in close proximity
and are mediated by ligand-receptor interactions. Hence, the spatial pattern could be
deciphered by utilizing ligand-receptor co-expression patterns. Under this assumption,
CSOmap [51] reconstructs cellular spatial locations by performing ¢-distributed stochas-
tic neighbor embedding (t-SNE) to embed the scRNA-seq cells into a three-dimensional
map based on a cell-by-cell affinity matrix learned from ligand-receptor expression net-
works [84].

In summary, spatial location reconstruction for scRNA-seq data is often per-
formed in two steps—the feature engineering step to extract reference information
from spatial transcriptomics data [50, 52, 54, 81, 82] and the model building step
to infer spatial location probabilities of the cells in scRNA-seq data. Theoretically,
methods designed for spatial gene expression pattern identification [see the “Profil-
ing of localized gene expression pattern” section [40-46]] could be adopted to build
a spatial reference map utilizing spatial transcriptomics data. It is also worth noting
that Bageritz et al. [85] have a set of genes with spatially expression patterns, which
can potentially be used as a spatial reference map. Additionally, methods includ-
ing Harmony [38], LIGER [34], Seurat [33], and SpaGE [35] rely on joint dimension
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reduction to embed both scRNA-seq data and spatial transcriptomics data into a
common latent space (Fig. 3B). They have been extended to perform gene imputa-
tion on spatial transcriptomics data [36] and, likewise, could be adopted to perform
spatial location construction for scRNA-seq data after the joint dimension reduction
step.

Cell-cell/gene-gene interactions

Cell signaling is constrained by physical location in the cellular microenvironment, as
communicating cells are likely to be spatially adjacent. Integrating spatial information
could potentially increase the accuracy of cell-cell communication inferences [28, 86],
which is a typical application of spatial transcriptomics data analysis. To study cell-cell
interactions, SVCA [31] utilizes Gaussian processes with additive covariance to model
the variation of each gene’s expression. Specifically, SVCA [31] decomposes the varia-
tion in each gene into components of intrinsic, environmental, and cell-cell interaction
effects. In particular, the cell-cell interaction effect is modeled by a covariance function
integrating gene expression and spatial distances. SVCA [31] then calculates the propor-
tion of variance attributable to the cell-cell interaction component through maximum
likelihood with a gradient-based optimizer. If a gene’s variation is largely explained by
the cell-cell interaction component, the cell may significantly interact with neighboring
cells. GCNG [32] is a GCN-based model that encodes spatial information as a graph
and combines it with the expression data as node features. Specifically, GCNG [32] first
constructs an adjacency matrix from the spatial map by measuring cell-cell distances.
Using the adjacency matrix and the ligand-receptor expression matrix as inputs, GCNG
[32] utilizes two graph convolutional layers and a sigmoid function output layer for
gene-gene interaction prediction. Notably, gene-gene interaction is often mediated by
secreted cytokines, and interacting genes do not necessarily need to be adjacent to each
other [84]. In this case, the two convolutional layers in GCNG [32] could detect these
indirect interactions. Fischer et al. tackled the cell communication problem using node-
centric expression modeling (NCEM), which is a graph neural networks based model
[87]. MISTy [29] is a multiview model capable of learning interaction effects from both
neighboring cells and distant cells. For a specific gene, MISTy [29] models its expres-
sion level as the output and other genes’ expression levels as the input. One of the views
focuses on the local cellular niche and relates the expression from the immediate neigh-
borhood of a cell to the observed expression within that cell. By analyzing how well dif-
ferent markers in this view contribute to predicting the target marker expression, we
may identify potential interactions between the target marker and the predictor markers
in a local spatial context. stLearn [30] and Squidpy [88] are pipelines that process and
analyze spatial transcriptomics and tissue morphology data in an integrative manner and
are capable of detecting cell-cell interactions. Specifically, stLearn [30] and Squidpy [88]
utilize CellPhoneDB [89], a method proposed to study cell-cell interactions on scRNA-
seq data using permutation tests, to identify ligand-receptor-mediated cell-cell interac-
tions between identified cell clusters. Indeed, cellular spatial organizations are important
for tissue functions and are mediated by ligand-receptor interactions [90, 91]. Theoreti-

cally, possible cell-cell communications or gene-gene interactions can be inferred using
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knowledge about spatially variable genes and ligand-receptor co-expression information.
Such applications include novoSpaRc [56], SpaOTsc [55], and DEEPsc [39].

Conclusions and perspectives

The fast development of spatial transcriptomics technology has spurred vast potentials
for biological studies. However, the increasing data complexity due to additional spa-
tial information has raised significant challenges for data analyses. As summarized in
this review, different methods have been developed to tackle these challenges. Overall,
spatial transcriptomics data analyses have benefited from integrating expression pro-
files with scRNA-seq data through joint dimension reduction [reviewed in [22]]. Com-
monly used methods for joint dimension reduction include NMF, PCA, SVD, CCA,
and embeddings through convolutional networks. Among the computational methods
that have been applied to spatial transcriptomics data, GCN is a promising tool and is
gaining popularity [27, 32, 43], as it could leverage information from spatial neighbor-
hoods to enhance data resolution. Likewise, GLISS [46], HMRF [47], and BayesSpace
[48] also leverage information from neighboring cells to increase the sensitivity of local-
ized expression pattern detection. On a separate note, semi-supervised learning utilizes
both labeled and unlabeled data during model training and has proven to be effective in
analyzing spatial transcriptomics data [27].

There exists an increasing number of resources for spatial transcriptomics research.
SpatialDB [92] is a curated database for spatial transcriptomics datasets. It contains
24 datasets from 5 species generated by eight spatial transcriptomics techniques. In
addition, the museum of spatial transcriptomics [12] provides a collection of study-
level meta information of spatial transcriptomics datasets. Compared with spatial
transcriptomics, scRNA-seq databases are more readily available. For example, TISCH
[93] is a scRNA-seq database that has assembled transcriptome profiles of more than
two million single cells. During the method development process, various spatial
transcriptomics datasets have been generated or re-evaluated for benchmarking and
performance evaluation. We have summarized different spatial transcriptomics data-
sets (Additional file 1: Table S1) and baseline methods (Additional file 1: Table S2) for
method development in the papers that we have reviewed. In addition to the data-
sets, comprehensive pipelines to process the spatial transcriptomics data are availa-
ble, including STUtility [94], Giotto [64], stLearn [30], dotdotdot [95], Squidpy [88],
and GLISS [46]. These pipelines and toolboxes have covered a wide range of functions
and algorithms to analyze and visualize spatial transcriptomics data. STUtility [94]
takes 10X Genomics Visium data as the input and can perform data standardization,
regional annotation, and visualization. Giotto [64] is a toolbox that implements algo-
rithms for characterizing tissue composition, spatial expression pattern, and cellular
interactions. stLearn [30] provides integrative approaches, including cell type annota-
tion, cell pseudo-space-time reconstruction, and cell-cell interaction inference. Dot-
dotdot [95] is a computational workflow to preprocess spatial transcriptomics data and
perform differential expression analysis. GLISS [46] could discover new spatial genes
and recover cell locations in scRNA-seq data. These spatial transcriptomics datasets
and analysis pipelines provide solid foundations for future method development for
spatial transcriptomics data.
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Challenges remain in the algorithm development for analyzing spatial transcriptomics
data. As the field has achieved transcriptome-wide sequencing, spatial transcriptomics
data quality is still limited by reduced coverage and low cellular resolution [96]. scRNA-
seq has limitations of low capture efficiency and high dropouts, and these limitations
are inherited by the spatial transcriptomics data [97]. In particular, in sequencing pro-
tocols where the size of the capture location is larger than a cell, multiple cells will be
profiled as a mixture. In tumor microenvironment studies where immune cell infiltra-
tion is sparse and scattered, signals from the immune cells will be hardly captured since
immune cells are dispersed. In addition, transcripts in spatial transcriptomics data do
not necessarily follow a distribution similar to that of scRNA-seq data since these tran-
scripts are from a mixture of multiple cells. Therefore, the assumptions made for analyz-
ing scRNA-seq data need to be re-evaluated before applying to spatial transcriptomics
research.

Multiple exciting directions remain to be explored in the field. As new computa-
tional algorithms are being developed rapidly, the field will benefit from more sys-
tematic benchmark studies, like what has been done for scRNA-seq data analyses
[98-100]. To facilitate systematic benchmark studies, we have summarized the data-
sets that have been used for tool development and benchmarking (Additional file 1:
Table S1) and the tools that have been used as baselines during method development
(Additional file 1: Table S2) in the papers reviewed. Comprehensive benchmark stud-
ies could aid potential users in prioritizing the methods that best fit their data and
hypotheses. Computational algorithms have been developed to infer cell states and
their developmental trajectories in sScCRNA-seq data [reviewed in [18]]. Even though
most of the knowledge we learned from trajectory inference for scRNA-seq data is
applicable to spatial transcriptomics data, it is necessary to adapt the algorithms
so that they can utilize spatial information effectively, as has been done in [101]. A
method called scHOT [102] is a computational approach designed to identify changes
in higher-order interactions among genes in cells along a continuous trajectory or
across space. This method has also been demonstrated to be effective in spatial tran-
scriptomics data. In addition, incorporation of spatial location information has the
potential to increase the sensitivity of cell-cell and gene-gene interaction studies, as
interacting cells are more likely to be spatially adjacent. Indeed, with the rapid expan-
sion of ligand-receptor interaction and cytokine secretion related knowledge [103],
the integration of multiple data modalities might open new opportunities to study
cell-cell and gene-gene interactions, especially the multiway interactions that involve
multiple parties. Furthermore, with the fast development of sequencing technology,
high-throughput platforms for spatial multi-omics are becoming available, for exam-
ple, SM-Omics could capture both spatially resolved transcriptomes and proteomes
[104], whereas SHARE-seq measures high-throughput ATAC and RNA expres-
sion simultaneously [105]. By employing these platforms, more levels of molecular
information will be collected from the same tissue section. These data will provide
a more holistic view of the biological mechanisms and interactions but, at the same
time, requires more sophisticated models with well-justified underlying assumptions
for data analysis [106]. Additionally, it is important to transfer the multimodal data
to spatial space for visualization at single-cell resolution. For this purpose, further
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method development is needed to incorporate the spatial information into the multi-
omics data. The construction of common coordinate frameworks (CCFs) is a compu-
tational approach to integrate data from various sources into a consistent reference
and to construct maps of molecular and cellular organization at histological and
anatomical scales. The concept of CCFs has been discussed in [107], and the method
development has been tackled in [108]. CCFs have also been generated with 3D refer-
ence, which can be used to analyze, visualize, and integrate multimodal and multi-
scale datasets in 3D. In terms of 3D modeling, MERFISH has been extended to DNA
imaging, which enables simultaneous imaging of the 3D organization of a tissue [109].
Computational approaches need to be developed to increase the efficiency of 3D data
modeling and analysis. In addition, the analysis of spatial transcriptomics data from
multiple tissue sections and time points has a potential to facilitate biological discov-
ery, as has been done in [110]. Furthermore, neighboring cells in a tumor are likely
to share similar copy number variations. Therefore, copy number inference on spatial
transcriptomics data needs to be tackled, such as in [63, 111].

Spatial transcriptomics grants us a spatial perspective in addition to the expression
data and hence allows for new angles to explore different areas of biological research.
In this review, we surveyed the current advances in computational methods for inte-
grating and analyzing spatial transcriptomics data, with a focus on the topics of local-
ized gene expression pattern identification, spatial clustering, spatial decomposition,
gene imputation, spatial location reconstruction, and cell-cell/gene-gene interaction
inference. To aid future method development, we thoroughly summarized the data-
sets (Additional file 1: Table S1), baseline methods (Additional file 1: Table S2), and
pipelines that are available for data preprocessing and benchmark studies. By high-
lighting the challenges and opportunities in this rapidly growing field, we anticipate
motivating further studies to harness spatial transcriptomics data.
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