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Transfer learning enables predictions in 
network biology


Christina V. Theodoris1,2,3,4 ✉, Ling Xiao2,5, Anant Chopra6, Mark D. Chaffin2, Zeina R. Al Sayed2, 
Matthew C. Hill2,5, Helene Mantineo2,5, Elizabeth M. Brydon6, Zexian Zeng1,7, X. Shirley Liu1,7,8 
& Patrick T. Ellinor2,5 ✉

Mapping gene networks requires large amounts of transcriptomic data to learn the 
connections between genes, which impedes discoveries in settings with limited data, 
including rare diseases and diseases affecting clinically inaccessible tissues. Recently, 
transfer learning has revolutionized fields such as natural language understanding1,2 
and computer vision3 by leveraging deep learning models pretrained on large-scale 
general datasets that can then be fine-tuned towards a vast array of downstream tasks 
with limited task-specific data. Here, we developed a context-aware, attention-based 
deep learning model, Geneformer, pretrained on a large-scale corpus of about 
30 million single-cell transcriptomes to enable context-specific predictions in 
settings with limited data in network biology. During pretraining, Geneformer gained 
a fundamental understanding of network dynamics, encoding network hierarchy  
in the attention weights of the model in a completely self-supervised manner. 
Fine-tuning towards a diverse panel of downstream tasks relevant to chromatin and 
network dynamics using limited task-specific data demonstrated that Geneformer 
consistently boosted predictive accuracy. Applied to disease modelling with limited 
patient data, Geneformer identified candidate therapeutic targets for cardiomyopathy. 
Overall, Geneformer represents a pretrained deep learning model from which 
fine-tuning towards a broad range of downstream applications can be pursued to 
accelerate discovery of key network regulators and candidate therapeutic targets.

Mapping the gene regulatory networks that drive disease progres-
sion enables screening for molecules that correct the network by nor-
malizing core regulatory elements, rather than targeting peripheral 
downstream effectors that may not be disease modifying4,5. However, 
mapping the gene network architecture requires large amounts of 
transcriptomic data to learn the connections between genes, which 
impedes network-correcting drug discovery in settings with limited 
data, including rare diseases and diseases affecting clinically inacces-
sible tissues. Although data remain limited in these settings, recent 
advances in sequencing technologies have driven a rapid expansion in 
the amount of transcriptomic data available from human tissues more 
broadly. Furthermore, single-cell technologies have facilitated the 
observation of transcriptomic states without averaging the expression 
of genes across multiple cells, potentially providing more precise data 
for inference of network interactions, especially in diseases driven by 
dysregulation of multiple cell types.

Recently, the concept of transfer learning has revolutionized fields 
such as natural language understanding1,2 and computer vision3 by 
leveraging deep learning models pretrained on large-scale general 
datasets that can then be fine-tuned towards a vast array of down-
stream tasks with limited task-specific data that would be insufficient 

to yield meaningful predictions when used in isolation. Unlike model-
ling approaches that necessitate retraining a new model from scratch 
for each task6,7, this approach democratizes the fundamental know
ledge learned during the large-scale pretraining phase to a multitude 
of downstream applications distinct from the pretraining learning 
objective, transferring knowledge to new tasks (Fig. 1a and Extended 
Data Fig. 1a,b). The advent of the self-attention mechanism1,2 has fur-
ther transformed the deep learning field by generating context-aware 
models that are able to pay attention to large input spaces and learn 
which elements are most important to focus on in each context, boost-
ing predictions in a wide realm of applications2,8. Gene regulatory net-
work architectures are highly context-dependent, and attention-based 
models, known as transformers, may be exceptionally suited to 
context-specific modelling of network dynamics.

Here, we developed a context-aware, attention-based deep learning 
model, Geneformer, pretrained on large-scale transcriptomic data to 
enable predictions in settings with limited data. We assembled a large- 
scale pretraining corpus, Genecorpus-30M, comprising 29.9 million 
human single-cell transcriptomes from a broad range of tissues from 
publicly available data. We then pretrained Geneformer on this corpus 
using a self-supervised masked learning objective to gain a fundamental 
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understanding of network dynamics. The pretrained Geneformer accu-
rately predicted dosage-sensitive disease genes and their downstream 
targets through a context-aware in silico deletion approach. Further-
more, fine-tuning Geneformer towards a diverse panel of downstream 
tasks relevant to chromatin and network dynamics using just a limited 
set of task-specific training examples demonstrated that Geneformer 
consistently boosted predictive accuracy. Applied to disease model-
ling of cardiomyopathy, Geneformer predicted candidate therapeutic 
targets whose experimental inhibition significantly improved cardio-
myocyte contraction in an induced pluripotent stem cell (iPSC)-based 
model of the disease. Overall, Geneformer represents a pretrained 
deep learning model from which fine-tuning towards a broad range 

of downstream applications can be pursued to accelerate discovery 
of key network regulators and candidate therapeutic targets.

Geneformer architecture and pretraining
Geneformer is a context-aware, attention-based deep learning model 
pretrained on large-scale transcriptomic data to enable predictions in 
network biology with limited data through transfer learning (Fig. 1a). 
Geneformer harnesses the recent advent of self-attention1,2 to maintain 
attention over the large input space of genes expressed in the transcrip-
tome of each single cell and learn which genes are most important to 
focus on to optimize predictive accuracy within the given learning 
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Fig. 1 | Geneformer architecture and transfer learning strategy. a, Schematic 
of transfer learning strategy with initial self-supervised large-scale pretraining, 
copying pretrained weights to models for each fine-tuning task, adding 
fine-tuning layer and fine-tuning with limited task-specific data towards  
each downstream task. Through the single initial self-supervised large- 
scale pretraining on a generalizable learning objective, the model gains 
fundamental knowledge of the learning domain that is then democratized to a 
multitude of downstream applications distinct from the pretraining learning 
objective, transferring knowledge to new tasks. b, Tissue representation of 

Genecorpus-30M. NOS, not otherwise specified. c, Pretrained Geneformer 
architecture. Each single-cell transcriptome is encoded into a rank value 
encoding that then proceeds through six layers of transformer encoder units 
with parameters as follows: input size of 2,048 (fully represents 93% of rank 
value encodings in Geneformer-30M), 256 embedding dimensions, four 
attention heads per layer and feed-forward size of 512. Geneformer uses full 
dense self-attention across the input size of 2,048. Extractable outputs include 
contextual gene and cell embeddings, contextual attention weights and 
contextual predictions.
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objective. Importantly, network dynamics may vary across cell types, 
developmental timepoints or disease states. Accordingly, context 
awareness is a unique strength of Geneformer’s model architecture 
that allows predictions specific to each cell context.

First, we assembled a large-scale pretraining corpus, Genecorpus-30M, 
comprising 29.9 million human single-cell transcriptomes from a broad 
range of tissues from publicly available data (Fig. 1b and Supplementary 
Table 1). We excluded cells with high mutational burdens (for example, 
malignant cells and immortalized cell lines) that could lead to sub-
stantial network rewiring without companion genome sequencing 
to facilitate interpretation, and we established metrics for scalable 
filtering to exclude possible doublets and/or damaged cells.

The transcriptome of each single cell is then presented to the model as 
a rank value encoding where genes are ranked by their expression in that 
cell normalized by their expression across the entire Genecorpus-30M 
(Fig. 1c). Although the rank-based representation has limitations 
including not fully taking advantage of the precise gene expression 
measurements provided in transcript counts, the rank value encod-
ing provides a non-parametric representation of the transcriptome of 
each single cell and takes advantage of the many observations of the 
expression of each gene across Genecorpus-30M to prioritize genes 
that distinguish cell state. Specifically, this method will deprioritize 
ubiquitously highly expressed housekeeping genes by normalizing 
them to a lower rank. Conversely, genes such as transcription factors 
that may be expressed at low levels when they are expressed but have 
a high power to distinguish cell state will move to a higher rank within 
the encoding (Extended Data Fig. 1c). Furthermore, this rank-based 
approach may be more robust against technical artefacts that may 
systematically bias the absolute transcript counts value whereas the 
overall relative ranking of genes within each cell remains more stable.

The rank value encoding of the transcriptome of each single cell then 
proceeds through six transformer encoder units1,2, each composed of 
a self-attention layer and feed forward neural network layer (Fig. 1c). 
Pretraining was accomplished using a masked learning objective, which 
has been shown in other informational fields1,2 to improve generaliz-
ability of the foundational knowledge learned during pretraining for 
a wide range of downstream fine-tuning objectives. During pretrain-
ing, 15% of the genes within each transcriptome were masked, and the 
model was trained to predict which gene should be within each masked 
position in that specific cell state using the context of the remaining 
unmasked genes (Extended Data Fig. 1d–f). A principal strength of this 
approach is that it is entirely self-supervised and can be accomplished 
on completely unlabelled data, which allows the inclusion of large 
amounts of training data without being restricted to samples with 
accompanying labels. We implemented recent advances in distributed 
graphical processing unit (GPU) training9,10 to allow efficient pretrain-
ing on the large-scale dataset.

Context awareness and batch integration
For each single-cell transcriptome presented to Geneformer, the 
model embeds each gene into a 256-dimensional space that encodes 
the characteristics of the gene specific to the context of that cell. We 
first tested whether the pretrained Geneformer’s embedding of genes 
was impacted by common batch-dependent technical artefacts. We 
found that the gene embeddings were robust to sequencing platform11, 
preservation method12,13 and individual patient variability14 (Extended 
Data Fig. 2a). However, gene embeddings were dependent on the con-
text of other genes expressed in the cell, highlighting Geneformer’s 
context awareness. When we in silico reprogrammed fibroblasts15 
by artificially adding OCT4, SOX2, KLF4 and MYC to the front of their 
rank value encodings, the remaining genes in the transcriptome sig-
nificantly shifted their embedding towards the iPSC state (Extended 
Data Fig. 2b,c). Embeddings of genes in iPSC-derived myogenic cells16 
showed similar context awareness with in silico differentiation by 

MYOD (Extended Data Fig. 2d,e). Furthermore, genes known to be 
highly context-dependent, such as NOTCH receptors, showed more 
variability in their embeddings across variable cell types14 compared 
to the known housekeeping gene GAPDH (Extended Data Fig. 3).

Next, we integrated the embeddings of genes expressed in each cell 
to generate cell-level embeddings, which encode characteristics of 
the state of that single cell. Using a publicly available aortic aneurysm 
dataset14 as a test case, we found that although the original data were 
impacted by interpatient variability, Geneformer cell embeddings 
clustered primarily by cell type and phenotype as opposed to individual 
patient (Extended Data Fig. 4a). Given that the pretrained Geneformer’s 
cell embeddings were robust to these technical artefacts, we next tested 
whether fine-tuning would impact generalizability. Using a publicly 
available dataset11 of iPSC differentiation to cardiomyocytes assayed 
in parallel on the Drop-seq (single cell) or DroNc-seq (single nucleus) 
platform, we tested whether fine-tuning the model to distinguish cell 
types using data from one platform would reduce generalizability 
to cells assayed on the other platform. Interestingly, the fine-tuned 
Geneformer’s cell embeddings primarily clustered by cell types and 
showed improved integration of platforms compared to the original 
data even after batch effect removal using the ComBat17 or Harmony18 
methods (Extended Data Fig. 4b–f).

Although Geneformer is most focused on understanding network 
dynamics rather than cell-level annotations, we further investigated 
Geneformer’s performance in cell-type annotation given it is a com-
mon application for previously published models. We compared 
Geneformer to alternative XGBoost7 and deep neural network-based6 
models. These methods train a new model from scratch for each sepa-
rate tissue using the same supervised learning objective as is used for 
the final cell-type predictions in that specific tissue. Therefore, these 
approaches do not take advantage of the large amounts of data avail-
able more broadly that are not specifically labelled for that task. By 
contrast, Geneformer learns from large-scale unlabelled data during 
the self-supervised pretraining using a generalizable learning objec-
tive to gain fundamental knowledge that can then be transferred to a 
multitude of new and diverse fine-tuning tasks. Compared to these 
alternative methods, Geneformer boosted cell-type predictions in a 
variety of tissues, with the gap in performance by accuracy and macro F1 
score increasing as the number of cell-type classes increased, indicating 
that Geneformer was robust in even increasingly complex multiclass 
prediction applications (Extended Data Figs. 5 and 6).

Gene dosage sensitivity predictions
We next tested whether Geneformer could boost predictions with 
limited data in a diverse set of downstream fine-tuning applications 
(Supplementary Table 2). A major challenge of interpreting copy num-
ber variants (CNVs) in genetic diagnosis is determining which genes are 
sensitive to changes in their dosage. Although conservation and allele 
frequency are commonly used to predict dosage sensitivity, these fea-
tures do not vary across cell states and do not capture transcriptional 
dynamics that may inform contextual dosage sensitivity indicating 
which specific tissues would be affected by changes in the dosage of 
the gene. Using gene sets previously reported19–21 to be dosage-sensitive 
versus dosage-insensitive, we fine-tuned Geneformer using only 10,000 
random single-cell transcriptomes to distinguish dosage-sensitive 
versus dosage-insensitive transcription factors. The fine-tuned Gen-
eformer significantly boosted the ability to predict dosage sensitivity 
compared to alternative methods (area under the receiver operating 
characteristic curve (AUC) 0.91) (Fig. 2a and Extended Data Fig. 7a). 
Notably, pretraining with larger and more diverse corpuses consistently 
improved the predictive power in the downstream task despite using 
the same amount of limited task-specific data for fine-tuning (Fig. 2b).

We then asked whether, without any further training, the fine-tuned 
model could predict the dosage sensitivity of a recently reported set 
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of disease genes (Fig. 2c). Collins et al. analysed CNVs from 753,994 
individuals to define genes whose deletion was associated with pri-
marily neurodevelopmental disease with either high or moderate 
confidence22. The fine-tuned Geneformer model correctly predicted 
the high-confidence genes to be dosage sensitive in the specific con-
text of fetal cerebral cells with 96% concordance with the original 
study. The moderate-confidence genes reported by the authors were 
a much more permissive set (0.15–0.85 score versus high-confidence 
score cutoff greater than 0.85). The fine-tuned Geneformer predicted 
moderate-confidence genes to be dosage sensitive in fetal cerebral 
cells with 84% concordance with the original study. Interestingly, 
although the high-confidence genes, which may have a stronger effect, 
were predicted by Geneformer to be dosage sensitive at similar rates 
in fetal cerebral (96%) and other cells (95%), the predicted dosage 
sensitivity of the moderate-confidence genes seemed to be more 
context specific. The moderate-confidence genes were predicted to 
be dosage sensitive at a higher rate in fetal cerebral cells compared 
to neurons across any adult or developmental timepoint, consistent 
with the association of these genes with predominantly neurodevel-
opmental phenotypes in which adult neurons may be less relevant. 
They were predicted to be dosage sensitive at an even lower rate in 
random cells from any tissue, highlighting the context awareness  
of Geneformer.

We then designed an in silico deletion approach to identify genes 
whose deletion is predicted to have a deleterious effect in that par-
ticular cell context. We model gene deletion by removing the gene 
from the rank value encoding of the cell and quantifying the impact 
on the embeddings of the remaining genes in the encoding. To test 
this approach, we performed in silico deletion in fetal cardiomyo-
cytes23 using the pretrained Geneformer without any fine-tuning. In 
silico deletion of known cardiomyopathy and structural heart disease 
genes had a significantly larger effect than the control set of known 
hyperlipidaemia genes, which are expressed in cardiomyocytes and 
related to heart disease but whose phenotype affects cell types other 
than cardiomyocytes (Fig. 2d). In silico deletion of genes linked by a 
previous genome-wide association study24 (GWAS) to cardiac magnetic 
resonance imaging (MRI) traits relevant to cardiac disease also had 
a larger effect compared to the control set (Extended Data Fig. 7b).

Overall, genes whose deletion was predicted to have the most delete-
rious effect on cardiomyocytes were significantly enriched for human 
phenotypes including cardiomyopathy and abnormal myocardial mor-
phology (Supplementary Tables 3 and 4). Among the top 25 deleted 
genes with the most significant effect were transcription factors known 
to regulate myocardial development (for example, FOXM1; refs. 25,26) 
and entirely new dosage-sensitive gene candidates such as TEAD4 
(Supplementary Table 3). Experimental validation demonstrated 
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that CRISPR-mediated knockout of candidate TEAD4 in iPSC-derived 
cardiac microtissues caused a significant reduction in their ability to 
generate contractile stress (force per unit area) (Fig. 2e and Extended 
Data Fig. 7c). TEAD4 is a transcription factor involved in the Hippo 
signalling pathway27, and future work is warranted to further examine 
its role in cardiac development.

Chromatin dynamics predictions
Bivalent chromatin structure is known to mark key developmental 
genes in embryonic stem cells (ESCs), maintaining their promoters 
poised for activation28. Bivalent domains consist of large regions of 
H3K27me3 harbouring smaller regions of H3K4me3. We fine-tuned 
Geneformer to distinguish bivalently marked genes from those whose 
promoters were unmethylated or marked solely by H3K4me3 using 
transcriptomes from about 15,000 ESCs29. The labelled gene set used 
for this fine-tuning included only genes found in 56 conserved regions 
of the genome, as previously reported28. Geneformer significantly 
boosted the ability to predict bivalently marked genes compared to 
alternative methods (AUC 0.93 and 0.88; bivalent versus unmethylated 
or H3K4me3-only, respectively) (Fig. 3a,b and Extended Data Fig. 7d,e). 
Furthermore, predictions were generalizable to the remainder of the 
genome that was excluded from fine-tuning (Fig. 3c and Extended Data 
Fig. 8a–c). Thus, by fine-tuning Geneformer using solely transcriptional 
data with only 56 labelled loci in about 15,000 ESCs, the model could 
predict the results of more recent studies30 that included genome-wide 
profiling of bivalent domains.

Determining the genomic distances over which transcription 
factor binding influences downstream expression is valuable for 
interpreting regulatory variants and inferring target genes from 
transcription factor genome occupancy data. Others previously sys-
tematically integrated thousands of transcription factor-binding and 
histone-modification profiles assayed by chromatin immunoprecipita-
tion sequencing (ChIP–seq) with thousands of gene expression profiles 
to identify two classes of transcription factor with distinct ranges of 
regulatory influence31. We fine-tuned Geneformer to distinguish these 

long- versus short-range transcription factors using only single-cell 
transcriptomes from about 34,000 cells undergoing iPSC to cardiomyo-
cyte differentiation11 with no associated ChIP–seq or genomic distance 
data. Again, Geneformer significantly boosted the ability to predict 
the regulatory range of transcription factors compared to alternative 
methods, whose predictions were near random (Fig. 3d and Extended 
Data Fig. 8d). Thus, fine-tuning the pretrained Geneformer model was 
able to improve predictions even for this higher-order transcription 
factor property of regulatory range, a particularly challenging char-
acteristic to infer from transcriptional data alone.

Network dynamics predictions
Determining the hierarchy in gene networks enables the design of 
therapies targeting normalization of core regulatory elements that 
drive the disease process, rather than correction of peripheral down-
stream effectors that may not be disease modifying. We previously 
mapped the NOTCH1 (N1)-dependent gene network governing cardiac 
valve disease and identified central regulatory nodes whose correction 
had broad restorative impact on the network at large4,5. Mapping the 
network hierarchy required large amounts of transcriptional perturba-
tion data from patient-specific cells with isogenic controls to learn the 
connections between genes.

We tested whether Geneformer could be fine-tuned to distinguish 
central versus peripheral factors within the N1-dependent gene net-
work using only single-cell transcriptional data from about 30,000 
normal endothelial cells (ECs) from the Heart Atlas32 without any per-
turbation data. Again, Geneformer significantly boosted the ability 
to predict central versus peripheral factors compared to alternative 
methods (AUC 0.81) (Fig. 4a and Extended Data Fig. 8e). Furthermore, 
fine-tuning the pretrained Geneformer on the Heart Atlas ECs32 was able 
to distinguish N1 downstream targets from non-targets without any 
perturbation data, further demonstrating the ability of the model to 
encode key features of gene network dynamics and again significantly 
boosting predictions compared to alternative methods (Fig. 4b and 
Extended Data Fig. 9a).
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Fig. 3 | Geneformer boosted predictions of chromatin dynamics with 
limited data. a,b, ROC curve of Geneformer fine-tuned to distinguish bivalent 
versus non-methylated (a) or bivalent versus Lys4-only-methylated (b) genes  
in 56 conserved loci from ref. 28 using limited data (about 15,000 ESCs), 
compared to alternative methods. c, ROC curve of Geneformer’s genome-wide 

predictions of bivalent versus Lys4-only-methylated genes after fine-tuning  
on only 56 loci as in b. d, ROC curve of Geneformer fine-tuned to distinguish 
long-range versus short-range transcription factors (TFs) using limited data 
(about 38,000 cells from iPSC to cardiomyocyte differentiation), compared to 
alternative methods. (Alternative methods described in Fig. 2).
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To investigate the threshold for minimal data needed for fine-tuning, 
we fine-tuned the pretrained Geneformer with progressively smaller 
numbers of normal ECs from the Heart Atlas32 to distinguish central 
versus peripheral factors within the N1-dependent gene network. We 
found that nearly equivalent predictive potential was retained even 
when reducing the fine-tuning data to only 5,000 ECs (Fig. 4c). Then, 
to determine whether Geneformer could generate meaningful pre-
dictions using an even more miniscule number of fine-tuning train-
ing examples when the task-specific data were more relevant to the 
learning objective, we fine-tuned the pretrained Geneformer using 
only 884 ECs from healthy versus dilated aortas14. Interestingly, Gen-
eformer was able to distinguish central versus peripheral factors in the 
N1-dependent network with fine-tuning on this very minimal data to a 
better degree than the predictions of alternative methods trained on 
the larger dataset of about 30,000 ECs32, demonstrating the strength 
of pretraining in enabling predictions from increasingly limited data 
(Fig. 4d and Extended Data Fig. 9b). More than twice as many general 
cardiac ECs were needed to gain similar predictive potential as was pos-
sible from fine-tuning with the more relevant data from healthy versus 
dilated aortas, suggesting that the minimum amount of fine-tuning data 
needed is dependent on both the specific application and relevance 
of the data to that task.

Pretraining encoded network hierarchy
To investigate how the model was learning network dynamics dur-
ing the pretraining stage, we examined the pretrained Geneformer 
attention weights. The trained attention weights of the model for each 
gene reflect (1) which genes that gene pays attention to and (2) which 
genes pay attention to that gene. These attention weights are itera-
tively optimized during training to generate gene embeddings that 
best inform the correct answer for the given learning objective. Each 

of Geneformer’s six layers has four attention heads that are meant to 
learn in an unsupervised manner to pay attention to distinct classes of 
genes to jointly improve predictions without previous knowledge of 
the biological function of any gene.

When examining the attention weights in aortic ECs14, we found  
that 20% of attention heads significantly attended transcription  
factors more than other genes, indicating that specific attention heads 
learned, in an entirely self-supervised manner, the relative importance of 
transcription factors in distinguishing cell states (Fig. 4e). Furthermore, 
specific attention heads significantly attended central regulatory nodes 
to a greater degree than peripheral genes within N1-dependent network 
in ECs (Extended Data Fig. 9c). Concordantly, these centrality-driven 
attention heads consistently attended to a significantly greater degree 
the highest ranked genes in each cell’s unique rank value encoding in 
aortic ECs, smooth muscle cells, T cells, and macrophage, monocyte and 
dendritic cells (which each have different sets of highest ranked genes 
on the basis of cell-type context) (Extended Data Fig. 9d).

Interestingly, attention heads in the earliest layers were consistently 
the most diverse in terms of gene ranks they attended, suggesting that 
the model initially orients to the observed cell state through a joint 
survey of distinct portions of the input space. The middle layers were 
most broad in terms of gene ranks they attended, and the final layers 
were dominated by centrality-driven attention heads that focused on 
the highest ranked genes that uniquely define each cell state (Extended 
Data Fig. 9c,d).

In silico gene network analysis
Given that the gene embeddings reflect the joint output of the attention 
weights of the network, we tested whether the pretrained Geneformer 
already encoded network connections between transcription factors 
and their targets before fine-tuning. We determined the genes whose 
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Fig. 4 | Geneformer encoded gene network hierarchy. a, ROC curve of 
Geneformer fine-tuned to distinguish central versus peripheral genes within 
the N1-dependent gene network using limited data (about 30,000 ECs), 
compared to alternative methods. b, ROC curve of Geneformer fine-tuned to 
distinguish N1-activated versus non-target genes using limited data (about 
30,000 ECs), compared to alternative methods. c, ROC curve of Geneformer 
fine-tuned to distinguish central versus peripheral genes within the 
N1-dependent gene network using increasingly limited data (1,000–30,000 
ECs). d, ROC curve of Geneformer fine-tuned to distinguish central versus 

peripheral genes within the N1-dependent gene network using increasingly 
limited but more relevant data (884 ECs from healthy or dilated aortas).  
AUC was higher than alternative methods trained on a larger dataset of  
about 30,000 ECs (Fig. 4a). e, Pretrained Geneformer attention weights of 
transcription factors indicated that the model learned in a completely self- 
supervised way the relative importance of transcription factors, which were 
more highly attended than other genes in 20% of attention heads (P < 0.05, 
Wilcoxon rank sum, FDR-corrected) and were more attended in earlier layers 
(P < 0.05, Wilcoxon rank sum). (Alternative methods described in Fig. 2).
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embeddings in fetal cardiomyocytes23 were most impacted by in silico 
deletion of GATA4, a known congenital heart disease gene. In silico 
deletion of GATA4 had a significantly higher effect on genes known to 
be most significantly dysregulated by GATA4 variants in a previously 
reported iPSC disease model of GATA4-related heart defects33 (Extended 
Data Fig. 9e). Notably, direct GATA4 targets (as defined by ChIP–seq33) 
were significantly more impacted by in silico deletion of GATA4 in fetal 
cardiomyocytes compared to indirect targets (Fig. 5a). Analogously,  
in silico deletion of TBX5, another known congenital heart disease 
gene, in fetal cardiomyocytes23 more significantly impacted its direct 
targets (as defined by ChIP–seq34) compared to indirect targets and 
housekeeping genes (Extended Data Fig. 9f). These data suggest that in 
silico perturbation can be applied to model gene network connections.

Interestingly, the GATA4 variant studied in the iPSC disease model 
disrupts the interaction of GATA4 with its binding partner, transcription 
factor TBX5 (ref. 33). We tested whether our in silico deletion approach 
could model the effect of deleting these two genes in combination 
(Fig. 5b). Indeed, in silico deletion of GATA4 or TBX5 alone had a sig-
nificantly more deleterious effect on their known cobound targets33 
compared to housekeeping genes. Furthermore, in silico deletion of 
both GATA4 and TBX5 in combination had an even greater impact on 
their known cobound targets than the sum of their individual in silico 
deletion, suggesting that Geneformer recognized their cooperative 
action at these cobound targets.

In silico treatment analysis
We next tested whether our in silico perturbation strategy could be 
applied to model human disease and reveal candidate therapeutic 
targets (Fig. 6a). First, we fine-tuned Geneformer to distinguish car-
diomyocytes35 from non-failing hearts (n = 9) or hearts affected by 
hypertrophic (n = 11) or dilated (n = 9) cardiomyopathy with an overall 
out-of-sample accuracy of 90% (Fig. 6b and Extended Data Fig. 10a). 
We then determined the genes whose in silico deletion or activation 
in cardiomyocytes from non-failing hearts significantly shifted the 
fine-tuned Geneformer cell embeddings towards the hypertrophic 
or dilated cardiomyopathy states (Fig. 6c,d, Extended Data Fig. 10b,c 
and Supplementary Tables 5–11). Overall, the model identified 447 
genes whose loss was predicted to shift cardiomyocytes towards the 
hypertrophic cardiomyopathy state, which were enriched for pathways 
including Titin binding36 and sarcomere organization37 known to impact 
hypertrophic cardiomyopathy pathogenesis. The model identified 
478 genes whose loss was predicted to shift cardiomyocytes towards 

dilated cardiomyopathy, which were enriched for pathways involved 
in muscle contraction38 and mitochondrial39 function.

Then, we performed in silico treatment analysis in cardiomyocytes 
from hypertrophic or dilated cardiomyopathy patients to determine 
whether inhibition or activation of specific pathways would shift the 
cell embeddings back towards the non-failing heart state (Fig. 6e, 
Extended Data Fig. 10d and Supplementary Tables 12–15). Top enriched 
pathways for hypertrophic cardiomyopathy pointed to candidate 
cardiomyocyte-specific therapeutic targets including ADCY5, dis-
ruption of which is associated with longevity and protection against 
cardiomyopathy in mouse models40, as well as druggable targets41 
including SRPK3, a downstream effector of MEF2 (ref. 42), which is 
known to play a critical role in myocardial cell hypertrophy43.

We then performed experimental validation to determine whether 
inhibition of Geneformer-predicted therapeutic candidates for dilated 
cardiomyopathy could improve cardiomyocyte function in an experi-
mental model of the disease. Titin (TTN) truncating mutations are the 
leading cause of dilated cardiomyopathy in humans and are found in 
about 20% of affected patients36. iPSC-derived cardiac microtissues har-
bouring a truncating variant (TTN+/−) in the A-band are known to exhibit 
reduced contractile stress compared to isogenic TTN+/+ controls36. 
Strikingly, CRISPR-mediated knockout of both Geneformer-predicted 
targets GSN and PLN in the TTN+/− cells significantly improved the con-
tractile stress of the TTN+/− cardiac microtissues, validating these genes 
as promising candidate therapeutic targets for this disease (Fig. 6f,g 
and Extended Data Fig. 10e). These findings provide experimental 
validation in support of the utility of Geneformer as a tool for discovery 
of candidate therapeutic targets in human disease.

Discussion
In sum, we developed a context-aware deep learning model, Gen-
eformer, pretrained on large-scale transcriptomic data to enable 
predictions in settings with limited data. Through the observation 
of a vast number of cell states during the pretraining process, Gen-
eformer gained a fundamental understanding of network dynamics, 
encoding network hierarchy in the attention weights of the model 
in a completely self-supervised manner. Geneformer’s ability to pre-
dict dosage-sensitive disease genes through the context-aware in 
silico deletion approach represents a valuable asset for interpreta-
tion of genetic variants, including prioritization of GWAS hits driving 
complex traits, and the specific tissues they are expected to affect. 
Experimental validation of a dosage-sensitive gene candidate in fetal 
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cardiomyocytes, TEAD4, supports the utility of Geneformer for driving 
biological insights in human development. Applied to disease model-
ling of cardiomyopathy using a limited number of patient samples, 

Geneformer predicted candidate therapeutic targets whose experi-
mental targeting in an iPSC disease model led to significant functional 
improvement. In silico treatment analysis using limited data may thus 
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enable therapeutic discovery in innumerable diseases that have been 
previously impeded by limited data because they are rare or affect 
clinically inaccessible tissue.

Furthermore, we found that pretraining with larger and more diverse 
corpuses consistently improved Geneformer’s predictive power, in 
agreement with observations that large-scale pretraining allows train-
ing of deeper models that ultimately have greater predictive potential in 
fields including natural language understanding, computer vision and 
mathematical problem-solving44. Furthermore, exposure to hundreds 
of experimental datasets during pretraining also seemed to promote 
robustness to batch-dependent technical artefacts and individual vari-
ability that commonly impact single-cell analyses in biology. These find-
ings suggest that as the amount of publicly available transcriptomic 
data continues to expand, future models pretrained on even larger-scale 
corpuses may open opportunities to achieve meaningful predictions 
in even more elusive tasks with increasingly limited task-specific data. 
Overall, Geneformer represents a pretrained deep learning model 
whose fundamental understanding of network dynamics can now be 
democratized to a broad range of downstream applications to accel-
erate discovery of key network regulators and candidate therapeutic 
targets in settings with limited data.
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Methods

Assembly and rank value encoding of transcriptomes in 
Genecorpus-30M
Assembly and uniform processing of single-cell transcriptomes. We 
assembled a large-scale pretraining corpus, Genecorpus-30M, compris-
ing 29.9 million (29,900,531) human single-cell transcriptomes from a 
broad range of tissues from publicly available data (Fig. 1b and Supple-
mentary Table 1). We excluded cells with high mutational burdens (for 
example, malignant cells and immortalized cell lines) that could lead to 
substantial network rewiring without companion genome sequencing 
to facilitate interpretation. We only included droplet-based sequencing 
platforms to assure expression value unit comparability. Overall, 561 
datasets were included and stored as uniform files in the .loom HDF5 
format including metadata from the original studies as row (feature) 
and column (cell) attributes described below.

Publicly available datasets containing raw counts were collected 
from the National Center for Biotechnology Information (NCBI) Gene 
Expression Omnibus (GEO), NCBI Sequence Read Archive (SRA), 
Human Cell Atlas, European Molecular Biology Laboratory-European 
Bioinformatics Institute (EMBL-EBI) Single Cell Expression Atlas, 
Broad Institute Single Cell Portal, Brotman Baty Institute (BBI)-Allen 
Single Cell Atlases, Tumor Immune Single-cell Hub (TISCH) (exclud-
ing malignant cells), Panglao Database, 10x Genomics, University of 
California, Santa Cruz Cell Browser, European Genome-phenome 
Archive, Synapse, Riken, Zenodo, National Institutes of Health (NIH) 
Figshare Archive, NCBI dbGap, Refine.bio, China National GeneBank 
Sequence Archive, Mendeley Data and individual communication 
with authors of the original studies11,23,29,32,45,47–153. Further resources 
for collecting information about suitable studies included Entrez 
Direct tools and the dataset summary from Database 2020 (ref. 154). 
Tools used in conversion of data to uniform .loom HDF5 files included 
loompy, scanpy155, anndata, scipy, numpy, pandas, Cellranger and 
LoomExperiment.

Row feature attributes included Ensembl annotations for the gene ID, 
ID version (if provided by original study), name and type (for example, 
protein coding, microRNA, mitochondrial and so on). Annotation data 
were retrieved from Ensembl and MyGene156. Column cell attributes 
included a unique Genecorpus-30M cell ID comprising the dataset 
name, sample name and cell barcode from that dataset. The dataset 
and sample names were also included as separate individual attributes 
such that the cell barcode can be derived by subtracting these from 
the unique Genecorpus-30M cell ID if needed. Column cell attributes 
also included the principal organ included in the dataset, which we 
annotated as one of the following categories: adipose, adrenal, airway, 
bladder, bone, bone_marrow, brain, breast, cord_blood, decidua, ear, 
embryo, endothelial, eye, heart, immune, intestine_unspecified, kid-
ney, large_intestine, liver, lung, lymph_node, lymphatic, muscle, nasal, 
oesophagus, pancreas, placenta, pluripotent_stem_cell, prostate, skin, 
small_intestine, spleen, stomach, testis, thymus, tonsil, various, yolk_
sac. Column cell attributes also included the specific organ(s) included 
in the dataset on the basis of metadata provided by the original study. 
If the original study included cell-type annotations, we included these 
as a cell-type column attribute for each cell as well. We also included 
the sequencing platform used.

Column cell attributes also included several calculated measure-
ments for each cell: the total number of read counts, the percentage 
of mitochondrial reads, the number of genes Ensembl-annotated 
as protein-coding or miRNA genes and whether the cell passed the 
quality-control metrics we established for scalable filtering of the cells 
to exclude possible doublets and/or damaged cells. Only cells that 
passed these filtering metrics were used for downstream analyses in this 
work. Specifically, datasets were filtered to retain cells with total read 
counts within 3 s.d. of the mean within that dataset and mitochondrial 
reads within 3 s.d. of the mean within that dataset. Ensembl-annotated 

protein-coding and miRNA genes were used for downstream analysis. 
Cells with less than seven detected Ensembl-annotated protein-coding 
or miRNA genes were excluded as the 15% masking used for the pretrain-
ing learning objective would not reliably mask a gene in cells with fewer 
detected genes. Ultimately, 27.4 million (27,406,217) cells passed the 
defined quality filters.

Rank value encoding of single-cell transcriptomes. We developed 
a rank value encoding method that provides a non-parametric rep-
resentation of the transcriptome of each single cell, ranking genes 
by their expression within that cell normalized by their expression 
across the entire Genecorpus-30M (Fig. 1c). This method takes advan-
tage of the many observations of the expression of each gene across 
Genecorpus-30M to prioritize genes that distinguish cell state. Speci
fically, this method will deprioritize ubiquitously highly expressed 
housekeeping genes by normalizing them to a lower rank. Conversely, 
genes such as transcription factors that may be expressed at low levels 
when they are expressed but have a high power to distinguish cell state 
will move to a higher rank within the encoding (Extended Data Fig. 1c). 
Furthermore, this rank-based approach may be more robust against 
technical artefacts that may systematically bias the absolute transcript 
counts value whereas the overall relative ranking of genes within each 
cell remains more stable.

To accomplish this, we first calculated the non-zero median value of 
expression of each detected gene across all cells passing quality filter-
ing from the entire Genecorpus-30M. We aggregated the transcript 
count distribution for each gene in a memory-efficient manner by 
scanning through chunks of .loom data using loompy, normalizing 
the gene transcript counts in each cell by the total transcript count of 
that cell to account for varying sequencing depth and updating the 
normalized count distribution of the gene within the t-digest157 data 
structure developed for accurate online accumulation of rank-based 
statistics. We then normalized the genes in each single-cell tran-
scriptome by the non-zero median value of expression of that gene 
across Genecorpus-30M and ordered the genes by the rank of their 
normalized expression in that specific cell. Of note, we opted to use 
the non-zero median value of expression rather than include zeros 
in the distribution so as not to weight the value by tissue representa-
tion within Genecorpus-30M, assuming that a representative range of 
transcript values would be observed within the cells in which each gene 
was detected. This normalization factor for each gene is calculated 
once from the pretraining corpus and is used for all future datasets 
presented to the model. The provided tokenizer code includes this nor-
malization procedure and should be used for tokenizing new datasets 
presented to Geneformer to ensure consistency of the normalization 
factor used for each gene.

The rank value encodings for each single-cell transcriptome 
were then tokenized on the basis of a total vocabulary of 25,424 
protein-coding or miRNA genes detected in a median of 173,152 cells 
within Genecorpus-30M. The vocabulary also included two more spe-
cial tokens for padding and masking. The tokenized data were stored 
within the Huggingface Datasets158 structure, which is based on the 
Apache Arrow format that allows processing of large datasets with 
zero-copy reads without memory constraints. Of note, this strategy is 
also space-efficient as the genes are stored as ranked tokens as oppo
sed to the exact transcript values, and we only store genes detected  
within each cell rather than the full sparse dataset that includes all of 
the undetected genes.

Geneformer architecture and pretraining
Geneformer architecture. Geneformer is composed of six trans-
former encoder units1,2, each composed of a self-attention layer and 
feed forward neural network layer with the following parameters: 
input size of 2,048 (fully represents 93% of rank value encodings in 
Genecorpus-30M), 256 embedding dimensions, four attention heads 



per layer and feed forward size of 512 (Fig. 1c). Geneformer uses full 
dense self-attention across the input size of 2,048. Depth was chosen 
on the basis of the maximum depth for which there were sufficient 
data to pretrain as it has been established that this approach yields the 
greatest predictive potential in other informational fields including 
natural language understanding, computer vision and mathematical 
problem-solving44. Furthermore, we maximized the amount of context 
(input size) considered by the model with full attention based on the 
number of genes standardly detected in each cell within the pretrain-
ing corpus. Further parameters were as follows: nonlinear activation 
function, rectified linear unit (ReLU); dropout probability for all fully 
connected layers, 0.02; dropout ratio for attention probabilities, 0.02; 
standard deviation of the initializer for weight matrices, 0.02; epsilon 
for layer normalization layers, 1 × 10–12. Modelling was implemented in 
pytorch and using the Huggingface Transformers library159 for model 
configuration, data loading and training.

Geneformer pretraining and performance optimization. Pretraining 
was accomplished using a masked learning objective, which has been 
shown in other informational fields1,2 to improve generalizability of 
the foundational knowledge learned during pretraining for a wide 
range of downstream fine-tuning objectives. During pretraining, 15% 
of the genes within each transcriptome were masked and the model 
was trained to predict which gene should be within each masked posi-
tion in that specific cell state using the context of the remaining un-
masked genes. A principal strength of this approach is that it is entirely 
self-supervised and can be accomplished on completely unlabelled 
data, which allows the inclusion of large amounts of training data with-
out being restricted to samples with accompanying labels. Pretraining 
hyperparameters were optimized to the following final values: max 
learning rate, 1 × 10–3; learning scheduler, linear with warmup; opti-
mizer, Adam with weight decay fix160; warmup steps, 10,000; weight 
decay, 0.001; batch size, 12. Tensorboard was used for experimentation 
tracking, and the model was pretrained for three epochs.

As the input size of 2,048 is considerably large for a full dense 
self-attention model (for example, BERT1,2 input size is 512) and trans-
formers have a quadratic memory and time complexity O (L2) with 
respect to input size, we implemented measures to optimize efficiency 
of large-scale pretraining. The trainer from the Huggingface Trans
formers library159 was used for pretraining with the substitution of a 
custom tokenizer to implement dynamic, length-grouped padding, 
which minimized computation on padding and achieved a 29.4× 
speedup in pretraining. This process takes a randomly sampled 
megabatch and then orders minibatches by their length in descending 
order (to ensure that any memory constraints are encountered earlier). 
Minibatches are then dynamically padded, minimizing the compu
tation wasted on padding due to being length grouped. We also  
implemented recent advances in distributed GPU training9,10 to allow 
efficient pretraining on the large-scale dataset using Deepspeed,  
which partitions parameters, gradients and optimizer states across 
available GPUs, offloads processing/memory as possible to central 
processing units (CPUs) to allow more to fit on GPU and reduces mem-
ory fragmentation by ensuring that long- and short-term memory 
allocations do not mix. Overall, pretraining was achieved in approxi-
mately 3 days distributed across three nodes each with four Nvidia 
V100 32GB GPUs (total 12 GPUs).

Geneformer fine-tuning
Fine-tuning of Geneformer was accomplished by initializing the model 
with the pretrained Geneformer weights and adding a final task-specific 
transformer layer. The fine-tuning objective was either gene classifica-
tion or cell classification as indicated in Supplementary Table 2. The 
trainer from the Huggingface Transformers library159 was used for 
pretraining with the substitution of a custom tokenizer as described 
above and a custom data collator for dynamically labelling gene or 

cell classes as indicated in Supplementary Table 2. To demonstrate the 
efficacy of the pretrained Geneformer in boosting predictive poten-
tial of downstream fine-tuning applications, we intentionally used 
the same fine-tuning hyperparameters for all applications. It should 
be noted that hyperparameter tuning for deep learning applications 
generally significantly enhances learning and so it is likely that the 
maximum predictive potential of Geneformer in these downstream 
applications is significantly underestimated. Hyperparameters used for 
fine-tuning were as follows: max learning rate, 5 × 10–5; learning sched-
uler, linear with warmup; optimizer, Adam with weight decay fix160; 
warmup steps, 500; weight decay, 0.001; batch size, 12. All fine-tuning 
in Supplementary Table 2 was performed with a single training epoch 
to avoid overfitting.

The number of layers frozen from fine-tuning are indicated in Sup-
plementary Table 2. Generally, in our experience, applications that are 
more relevant to the pretraining objective benefit from more layers 
being frozen to prevent overfitting to the limited task-specific data, 
whereas applications that are more distant from the pretraining objec-
tive benefit from fine-tuning of more layers to optimize performance 
on the new task. Fine-tuning results for gene classification applications 
were reported as AUCs ± standard deviation and F1 score calculated 
on the basis of a fivefold cross-validation strategy for which training 
was performed on 80% of the gene training labels and performance 
was tested on the 20% held-out gene training labels, repeating for five 
folds. Of note, because the fine-tuning applications are trained on 
classification objectives that are completely separate from the masked 
learning objective, whether or not task-specific data were included in 
the pretraining corpus is not relevant to the classification predictions, 
as demonstrated in Extended Data Fig. 1f.

We then fully fine-tuned the dosage sensitivity and bivalency clas-
sification models using all gene training labels to test their ability to 
generalize to out-of-sample data. We tested whether, without any fur-
ther training, the model fine-tuned to distinguish dosage-sensitive 
versus insensitive genes could predict dosage sensitivity of a recently 
reported set of disease genes from ref. 22, which analysed CNVs from 
753,994 individuals to define genes whose deletion was associated 
with primarily neurodevelopmental disease with either high (greater 
than 0.85 score) or moderate (0.15–0.85 score) confidence22. Predicted 
dosage sensitivity of these gene sets was tested in the context of 10,000 
randomly sampled cells from Genecorpus-30M, neurons across any 
adult or developmental timepoint defined as TUBB3-marked cells from 
Genecorpus-30M or fetal cerebral cells from the Fetal Cell Atlas23. We 
also tested whether, without any further training, the model fine-tuned 
to distinguish bivalent versus single Lys4-marked genes by training 
on the 56 highly conserved loci would generalize to the genome-wide 
setting30.

Geneformer gene embeddings, cell embeddings and attention 
weights
Gene embeddings. For each single-cell transcriptome presented to 
Geneformer, the model embeds each gene into a 256-dimensional space 
that encodes the characteristics of the gene specific to the context of 
that cell. Contextual Geneformer gene embeddings are extracted as 
the hidden state weights for the 256 embedding dimensions for each 
gene within the given single-cell transcriptome evaluated by forward 
pass through the Geneformer model. Gene embeddings analysed in 
this study were extracted from the second to last layer of the models 
as the final layer is known to encompass features more directly related 
to the learning objective prediction whereas the second to last layer is 
a more generalizable representation.

Cell embeddings. Geneformer cell embeddings, which encode 
characteristics of the state of that single cell, are generated by aver-
aging the embeddings of each gene detected in that cell, resulting 
in a 256-dimensional embedding. We used the second to last layer 
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embeddings as discussed above (except for the disease modelling 
application as discussed in the Supplementary Methods).

Attention weights. Each of Geneformer’s six layers has four atten-
tion heads that are meant to learn in an unsupervised manner to pay 
attention to distinct classes of genes to jointly improve predictions 
without previous knowledge of the biological function of any gene. 
Contextual Geneformer attention weights are extracted for each at-
tention head within each self-attention layer for each gene within the 
given single-cell transcriptome evaluated by forward pass through the 
Geneformer model.

In silico perturbation
We designed an in silico perturbation approach for which the rank of 
given genes is perturbed to model their inhibition or activation. The 
effects of the in silico perturbation are measured at the cell and gene 
embedding level, modelling how the perturbation affects the state 
of the cell and the regulation of downstream genes within the gene 
network, respectively. In silico deletion was modelled by removing the 
given gene from the rank value encoding of the given single-cell tran-
scriptome and quantifying the cosine similarity between the original 
and perturbed (1) cell embeddings to determine the predicted del-
eterious impact of deleting that gene in that cell context or (2) gene 
embeddings of the remaining genes in the single-cell transcriptome 
to determine which genes were predicted to be most sensitive to in 
silico deletion of the given gene. In silico deletion can be performed 
with a single gene or multiple genes being deleted. In silico activation 
was modelled by moving a given gene(s) to the front of the rank value 
encoding (similarly to the in silico reprogramming strategy discussed 
in the Supplementary Methods in which genes were artificially added to 
the front of the rank value encoding to model cellular reprogramming 
by these factors). In theory, more subtle downregulation and activation 
could be modelled by shifting genes up or down within the rank value 
encoding to a subtler degree.

Please refer to the Supplementary Methods for complete methods  
including analysis of context dependence and robustness to batch- 
dependent technical artefacts, attention weight analysis, in silico 
perturbation analysis, alternative modelling approaches, cell-type 
annotation fine-tuning application, disease modelling approach, 
scRNA-seq sample collection and preprocessing and experimen-
tal testing of Geneformer-predicted targets in engineered cardiac  
microtissues.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Genecorpus-30M is available on the Huggingface Dataset Hub at 
https://huggingface.co/datasets/ctheodoris/Genecorpus-30M.

Code availability
The pretrained Geneformer model, transcriptome tokenizer and code 
for pretraining and fine-tuning the model are available on the Hugging-
face Model Hub at https://huggingface.co/ctheodoris/Geneformer. 
All other code used in this study is available upon request from the 
corresponding authors.
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Extended Data Fig. 1 | Geneformer transfer learning strategy. a, Schematic 
of standard modelling approach, which necessitates retraining a new model 
from scratch for each new task. b, Schematic of transfer learning strategy. 
Through a single initial self-supervised large-scale pretraining on a generalizable 
learning objective, the model gains fundamental knowledge of the learning 
domain that is then democratized to a multitude of downstream applications 
distinct from the pretraining learning objective, transferring knowledge to 
new tasks. c, Transcription factors are normalized by a statistically significantly 
lower factor (resulting in higher prioritization in the rank value encoding) 
compared to all genes. Housekeeping genes on average show a trend of a higher 
normalization factor (resulting in deprioritization in the rank value encoding) 
compared to all genes (*p < 0.05 by Wilcoxon, FDR-corrected; all genes n = 17,903, 
housekeeping genes n = 11, transcription factors n = 1,384; error bars = standard 
deviation). d, Pretraining was performed with a randomly subsampled corpus 
of 100,000 cells, holding out 10,000 cells for evaluation, with 3 different random 
seeds. Evaluation loss was essentially equivalent in the 3 trials, indicating 

robustness to the set of genes randomly masked for each cell during the 
pretraining. e, Pretraining was performed with a randomly subsampled corpus 
of 100,000 cells, holding out 10,000 cells for evaluation, with 3 different masking 
percentages. 15% masking had marginally lower evaluation loss compared to 
5% or 30% masking. f, Pretraining was performed with a randomly subsampled 
corpus of 90,000 cells and the model was then fine-tuned to distinguish 
dosage-sensitive vs. -insensitive transcription factors using 10,000 cells that 
were either included in or excluded from the 90,000 cell pretraining corpus. 
Predictive potential on the downstream fine-tuning task was measured by 
fivefold cross-validation with these 10,000 cells, demonstrating essentially 
equivalent results by AUC, confusion matrices, and F1 score. Because the fine-
tuning applications are trained on classification objectives that are completely 
separate from the masked learning objective, whether or not task-specific data 
was included in the pretraining corpus is not relevant to the downstream 
classification predictions.



Extended Data Fig. 2 | Geneformer was context-aware and robust to 
batch-dependent technical artefacts. a, Effect of gene versus the indicated 
batch-dependent technical artefact on pretrained Geneformer gene 
embeddings (*p < 0.05 by Wilcoxon, FDR-corrected; NS: non-significant).  
We found that the gene embeddings were robust to sequencing platform11, 
preservation method12,13, and individual patient variability14. b, UMAP  
of pretrained Geneformer cell embeddings of cells undergoing iPSC 
reprogramming appropriately captured temporal trajectory of reprogramming 
(cell types as annotated by original study15; iPSC negative or positive refers to 
expression of marker TRA-1-60). Cell embeddings suggested that cells which do 
not progress to the iPSC state bifurcate into an alternative fate compared to 
cells that progress to the iPSC state after the day 12 stage. c, Compared to in 

silico reprogramming with random genes, in silico reprogramming of 
fibroblasts by artificially adding OCT4, SOX2, KLF4, and MYC (OSKM) to the front 
of their rank value encodings significantly shifted the gene embeddings from 
their initial fibroblast state to the embedding of that gene in the iPSC state 
(*p < 0.05 by Wilcoxon). d, UMAP of pretrained Geneformer cell embeddings  
of cells undergoing iPSC to myoblast differentiation at the earlier S1 (PAX3+) 
and later S2B (PAX3+/MYOD+) stages (cell types as annotated by original 
study16). e, Compared to in silico differentiation with random genes, in silico 
differentiation of the early-stage myogenic cells by artificially adding MYOD  
to the front of their rank value encodings significantly shifted the gene 
embeddings from their earlier state to the embedding of that gene in the later 
MYOD+ myogenic state (*p < 0.05 by Wilcoxon).



Article

Extended Data Fig. 3 | Geneformer encoded context-specificity of key NOTCH pathway genes. Known context-dependent NOTCH genes showed higher 
variance in their contextual embeddings across variable aortic cell types compared to housekeeping gene GAPDH.



Extended Data Fig. 4 | Geneformer pretrained and fine-tuned cell 
embeddings were robust to batch-dependent technical artefacts. a, While 
original data (left) was highly affected by patient batch effect, cell embeddings 
generated by pretrained Geneformer (right) (without fine-tuning) clustered 
primarily by cell type and phenotype. Of note, affected individuals 1, 2, and 4 
had the phenotype of ascending only aortic aneurysm, which is a different 
phenotype than aortic aneurysm that includes the root. b, Imbalance in the 
number of genes detected in each of the two platforms (single-cell Drop-seq 
versus single-nucleus DroNc-seq), which may result in batch-dependent 
technical artefacts. c, Cell embeddings from each layer of the Geneformer 
model fine-tuned to distinguish the indicated cell types (as annotated by 
original study11) using only the Drop-seq data. As the cells pass through each 
layer, the model successively extrudes them from each other to derive 

separable embeddings that distinguish the cell types. d, Cell type predictions 
on the DroNc-seq data by the model fine-tuned only on the Drop-seq data (out 
of sample accuracy 84%). Of note, inaccurate predictions were predominantly 
in predicting that cardiomyocyte type 2 was type 1, as expected given the 
minimal examples of cardiomyocyte type 2 in the Drop-seq data. e, The 
imbalance of cardiomyocyte type 1 and 2 between the platforms also suggests 
that these cellular subtypes may be an artefact of variable gene detection 
between the two platforms. f, Geneformer fine-tuned with only Drop-seq data 
automatically integrated DroNc-seq data such that the fine-tuned Geneformer 
cell embeddings primarily clustered by cell types and showed improved 
integration of platforms compared to the original data even after batch effect 
removal using the ComBat17 or Harmony18 methods.
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Extended Data Fig. 5 | Geneformer boosted predictions in multiclass  
cell type annotation. a, Predictive potential (as measured by accuracy and 
macro F1 score) of Geneformer fine-tuned for cell type annotation in the 
indicated human tissues as compared to XGBoost (CaSTLe) and deep neural 
network-based (scDeepSort) methods. The top bar graph indicates the number 
of cell type classes for each tissue; the gap in performance of Geneformer 

compared to alternatives increased as the number of cell type classes 
increased, indicating that Geneformer was robust in even increasingly complex 
multiclass prediction applications. b, Lung, c, large intestine, or d, pancreas 
out of sample predictions by Geneformer fine-tuned to distinguish cell types in 
each tissue (training on 80% of cells, predictions on held-out 20% of cells).



Extended Data Fig. 6 | Embedding dimension activations distinguish cell 
types in fine-tuned Geneformer model. a, Kidney, b, liver, c, blood, d, spleen, 
e, brain, or f, placenta out of sample predictions by Geneformer fine-tuned to 

distinguish cell types in each tissue (training on 80% of cells, predictions on 
held-out 20% of cells). g, Specific embedding dimension activations 
distinguish each lung cell type in the fine-tuned model.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Geneformer boosted predictions in a diverse panel  
of downstream tasks. a, Confusion matrices and F1 score for Geneformer 
predictions vs. alternative methods (as described in Fig. 2a) for downstream 
task of distinguishing dosage-sensitive vs. insensitive transcription factors.  
b, Effect on cardiomyocyte embeddings from in silico deletion of genes linked 
by prior transcriptome-wide association study (TWAS)-prioritized GWAS24  
to cardiac MRI traits relevant to cardiac pathology (left ventricular (LV) end 
diastolic volume (EDV), LV end systolic volume (LVESV), LV ejection fraction 
(LVEF), and stroke volume (SV)) compared to in silico deletion of control 
cardiac disease genes expressed in cardiomyocytes but whose pathology 
occurs in non-cardiomyocyte cell types (hyperlipidemia). (*p < 0.05 by 

Wilcoxon, FDR-corrected; centre line = median, box limits = upper and lower 
quartiles, whiskers = 1.5x interquartile range, points = outliers). c, Quantitative 
PCR (QPCR) data of CRISPR-mediated knockout of TEAD4 in iPSC-derived 
cardiomyocytes (n = 3, *p < 0.05 by t-test; centre line = median, box limits = 
upper and lower quartiles, whiskers = 1.5× interquartile range, points = 
experimental replicates). d, Confusion matrices and F1 score for Geneformer 
predictions vs. alternative methods for downstream task of distinguishing 
bivalent vs. non-methylated genes (56 highly conserved loci28). e, Confusion 
matrices and F1 score for Geneformer predictions vs. alternative methods for 
downstream task of distinguishing bivalent vs. Lys4-only methylated genes  
(56 highly conserved loci28).
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Extended Data Fig. 8 | Geneformer boosted predictions in a diverse panel  
of downstream tasks. a, Confusion matrix and F1 score for Geneformer 
predictions vs. alternative methods (as described in Fig. 2a) for downstream 
task of distinguishing genome-wide30 bivalent vs. Lys4-only methylated genes 
with model fine-tuned only on 56 highly conserved loci28. b, ROC curve of 
Geneformer fine-tuned to distinguish genome-wide bivalent vs. Lys4-only- 
methylated genes using limited data (about 15K ESCs), compared to alternative 
methods. c, Confusion matrices and F1 score for Geneformer predictions vs. 

alternative methods for downstream task of distinguishing genome-wide 
bivalent vs. non-methylated genes with model fine-tuned on 80% of 
genome-wide loci and predicting on 20% of out of sample loci. d, Confusion 
matrices and F1 score for Geneformer predictions vs. alternative methods for 
downstream task of distinguishing long- vs. short-range transcription factors. 
e, Confusion matrices and F1 score for Geneformer predictions vs. alternative 
methods for downstream task of distinguishing central vs. peripheral genes 
within the N1-dependent network in endothelial cells.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | In silico deletion strategy revealed network 
connectivity. a, Confusion matrices and F1 score for Geneformer predictions vs. 
alternative methods (as described in Fig. 2a) for downstream task of 
distinguishing N1-activated vs. non-targets. b, Confusion matrix and F1 score of 
Geneformer predictions of central vs. peripheral genes within the N1-dependent 
network in endothelial cells (ECs) with model fine-tuned only on 884 ECs from 
healthy or dilated aortas14. c, Pretrained Geneformer attention weights in 
aortic ECs demonstrated that specific attention heads learned in a completely 
self-supervised way the relative centrality of the top most central versus most 
peripheral genes in the N1-dependent gene network (higher valence = more 
central) (*p < 0.05 Wilcoxon, FDR-corrected). d, Pretrained Geneformer 

contextual attention versus gene rank in rank value encoding in the indicated 
aortic cell types, which each have different sets of highest ranked genes based  
on cell type context (higher rank is leftward on x axis) (*p < 0.05 by Wilcoxon,  
FDR-corrected, * position = side with higher attention). All cells used for analysis 
had the same number of genes so that the rank values would be comparable.  
e, In silico deletion of GATA4 was significantly more deleterious to the previously 
reported highest confidence GATA4 targets33 than to housekeeping genes. f, In 
silico deletion of TBX5 was significantly more deleterious to previously reported 
TBX5 direct targets34 than to housekeeping genes or TBX5 indirect targets. In  
(e–f): *p < 0.05 by Wilcoxon, FDR-corrected; centre line = median, box limits = 
upper and lower quartiles, whiskers = 1.5× interquartile range, points = outliers.



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Geneformer fine-tuned cardiomyocyte embeddings 
clustered by phenotype. a, While original data (left) was highly affected by 
patient batch effect, cell embeddings generated by pretrained Geneformer 
(right) (without fine-tuning) clustered primarily by cell type. b, UMAP of 
cardiomyocyte embeddings from the model fine-tuned to distinguish 
cardiomyocytes in non-failing hearts from cardiomyocytes in patients with 
hypertrophic or dilated cardiomyopathy. c, Gene sets significantly associated 
with hypertrophic or dilated cardiomyopathy states by Geneformer in silico 
deletion disease modelling significantly overlapped with genes differentially 
expressed in those respective disease states (differentially expressed vs. non-
failing) compared to the overlap of those differentially expressed genes with 

background genes (the remainder of the genes detected in cardiomyocytes 
that were not significantly associated with hypertrophic or dilated 
cardiomyopathy by Geneformer disease modelling) (*p < 0.05 by X2 test,  
FDR-corrected). d, Pathway enrichment for genes whose in silico deletion in 
cardiomyocytes from hypertrophic cardiomyopathy patients significantly 
shifted embeddings towards the non-failing state and away from the dilated 
cardiomyopathy state, suggesting candidate therapeutic targets. e, QPCR data 
of CRISPR-mediated knockout of indicated genes in TTN+/− iPSC-derived 
cardiomyocytes (n = 3, *p < 0.05 by t-test). Centre line = median, box limits = upper 
and lower quartiles, whiskers = 1.5× interquartile range, points = experimental 
replicates.
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