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Pediatric acute lymphoblastic leukemia
(ALL) contains cytogenetically distinct
subtypes that respond differently to cyto-
toxic drugs. Subtype classification can
be also achieved through gene expres-
sion profiling. However, how to apply
such classifiers to a single patient and
correctly diagnose the disease subtype in
an independent patient group has not
been addressed. Furthermore, the under-
lying regulatory mechanisms responsible
for the subtype-specific gene expression

patterns are still largely unknown. Here,
by combining 3 published microarray
datasets on 535 mostly white children’s
samples and generating a new dataset on
100 Chinese children’s ALL samples, we
were able to (1) identify a 62-gene classi-
fier with 97.6% accuracy from the white
children’s samples and validated it on the
completely independent set of 100 Chi-
nese samples, and (2) uncover potential
regulatory networks of ALL subtypes. The
classifier we identified was, thus far, the

only one that could be applied directly to
a single sample and that sustained vali-
dation in a large independent patient
group. Our results also suggest that the
etiology of ALL is largely the same among
different ethnic groups, and that the tran-
scription factor hubs in the predicted
regulatory network might play important
roles in regulating gene expression and
development of ALL. (Blood. 2009;114:
4486-4493)

Introduction

Acute lymphoblastic leukemia (ALL; aka, acute lymphocytic
leukemia or acute lymphoid leukemia) is the most common
malignancy diagnosed in children, representing nearly one-third of
all pediatric cancers, with a peak incidence in 2- to 5-year-old
children.1

ALL is a heterogeneous disease with more than 12 subtypes that
respond differently to chemotherapy.2-9 If a patient is correctly
classified into a specific risk group, and treated with corresponding
aggressiveness so that the patient is neither overtreated nor
undertreated, the cure rate can exceed 80%.6,9,10 Therefore subtype
classification is very important in ALL diagnosis. The 6 common
subtypes of ALL are T-ALL, t(1;19) (E2A-PBX1), t(12;21) (TEL-
AML1), t(9;22) (BCR-ABL), t(4;11)MLL-rearrangement, and hyper-
diploid with more than 50 chromosomes (hyperdiploid�50;
Table 1).

Morphology, immunology, cytogenetics, and molecular biology
classification is widely used clinically for pediatric ALL. However,
as it is an expensive and time-consuming process; it is available
only in developed countries and a few major medical centers in
some developing countries. DNA microarrays have spurred the
search for gene expression–based markers for computational ALL
classification. By comparing genome-wide gene expression among
the subtypes of ALL, approximately 80 to 300 genes have been
identified as marker genes necessary to discriminate the 6 major
subtypes.11,12 However, a classification model that can be applied to

a single independent patient sample and can consistently retain
high accuracy is still lacking. Furthermore, the molecular mecha-
nisms giving rise to the subtype-specific gene expression patterns
are poorly understood. This led us to investigate whether by
combining more gene expression profiles from different studies we
can (1) find a minimal general set of marker genes for clinical ALL
subtype classification, and (2) uncover the possible regulatory
networks of ALL subtypes.

Methods

Datasets

White children’s ALL datasets were obtained from Yeoh et al,11 Ross et
al,12 and Hoffman et al.13 Gene annotations were downloaded from Gene
Ontology14,15 (GO; http://www.geneontology.org) and Kyoto Encyclope-
dia of Genes and Genomes16,17 (KEGG; http://www.genome.jp/kegg).
Transcription factor (TF) binding motifs were from TRANSFAC18,19 and
JASPAR20,21 databases. Predicted functional interactions were derived
from IntNetDB.22,23 Drug targets were obtained from Yildirim et al.24

All studies were approved by the institutional ethical board of the
Chinese Academy of Sciences.

CEL file preprocessing

The CEL file for each white or Chinese sample was preprocessed
individually using 2 steps of robust multiarray analysis (RMA)25 from the
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Bioconductor package26: (1) RMA convolution background adjustment and
(2) summarization based on “multiarray model” using the “median polish”
algorithm.

Data normalization between different microarray platforms

To reduce the systematic differences between Affymetrix HG-U95A and
HG-U133A, we first mapped all the probe sets on the Affymetrix
HG-U95Av2 chip onto the HG-U133A chip probe set IDs using the
HG-U95 to HG-U133 Best Match table (http://www.affymetrix.com/support/
technical/byproduct.affx?product � hgu133). Only probe sets that mapped
to unique genes were used for marker selections. We then used Ross et al’s
dataset as a standard to transform the mean and variance for each gene in
Yeoh et al’s dataset by the formula xi

’ � ([xi � �]/� � * �0) � �0, where �
and � are the mean and the standard deviation of the expression values of a
gene in Yeoh et al’s dataset, and �0 and �0 are the mean and the standard
deviation of the gene’s expression values in Ross et al’s dataset. Ross et al’s
data, Hoffman et al’s data, and our new Chinese array data, which are all
based on HG-U133A, were not normalized. No other normalization was
done in all the subsequent analysis steps. All microarray data have been
deposited with Gene Expression Omnibus (GEO) under accession number
GSE17703.27

Searching for the best minimal set of marker genes

We selected classification marker genes using the Support Vector Machine–
Recursive Feature Elimination (SVM-RFE) tool.28 Accuracy for each
marker gene set was evaluated using 10-fold cross-validation for subtype
classifier selection. We used 2 steps to select the minimal number of marker
genes: (1) We ranked within each sample the 9116 single gene probe sets
that are common to all datasets and used these rank values as initial input.
We first eliminated 10% genes at each iteration while the number of
remaining genes was more than 100, and then eliminated 1 gene at each
iteration step while the number of remaining genes was less than 100. For
each new iteration, the genes selected by the previous step were reranked
within each sample as input. The criterion for a “candidate gene set” was the
least number of genes that gave a 10-fold cross-validation accuracy greater
than 93% for classification marker selection. (2) Then we combined the
candidate genes of each fold (group) and further reduced the marker genes
one by one based on their occurrence frequency as markers selected in each
fold. The criterion for this “minimal marker set” was the least number
of genes where the cross-validation accuracy is greater than 97% for
classification marker selection.

The pseudocodes for selecting the minimal set of classification markers
are provided in supplemental Materials (available on the Blood website; see
the Supplemental Materials link at the top of the online article).

Classification using the 6 binary classifiers

When a sample was judged by the combination of the 6 SVM binary
classifiers, if none of the 6 classifiers gave a positive result, we predicted the
sample to be the “others” subtype; occasionally, if more than one classifier
declared a positive result, we chose the classifier that placed the sample at
the maximal distance to optimal separating hyperplane as the best classifier.
The distance was calculated using the function g(x) � (w � x) � b, where
the vector w is the weights of the marker genes, the input vector x is the
expression values of the marker genes, and b is a bias value.

Functional enrichment

Enriched KEGG pathways and GO terms were calculated as described by
Xia et al.29

Chinese ALL samples

A total of 100 pediatric acute lymphoblastic leukemia bone marrow (BM)
samples were analyzed, together with 5 non-ALL BM samples as negative
control. The diagnosis of ALL was based on morphology, immunology,
cytogenetic, and molecular classification. Cytogenetic ALL subtypes were
identified experimentally by G-banding karyotype and multiplex nested
reverse-transcription–polymerase chain reaction (PCR). Among the 100 ALL
patients, 11 relapsed within 5 years. All the samples, including those
relapsed afterward, were from patients treated on the Beijing Children’s
Hospital-2003 protocol and were extracted at their initial diagnosis. The
5 non-ALL BM samples were taken from the removed bones of patients
who had plastic surgery for their bone deformity in Beijing Children’s
Hospital. And the informed consent was obtained from parents, guardians,
or patients (as appropriate) in accordance with the Declaration of Helsinki.
The detailed descriptions of these samples are provided in supplemental
Table 1.

Gene expression profiling

Total RNA was extracted from cryopreserved mononuclear cell suspensions
from BM samples using Trizol (Invitrogen) and purified with RNeasy Kit
(QIAGEN). All samples were strictly subjected to quality control for RNA
qualification. After extraction, the quality and quantity of RNAs were tested
by electrophoresis and spectrophotometer, respectively. Only RNAs that
had clear 28S and 18S bands on electrophoresis gels were used for
microarray hybridization. Most samples had more than 20 �g total RNA
and concentrations of 1.0 to 5.0 �g/�L (supplemental Table 2). cDNA and
cRNA were synthesized with One-Cycle Target Labeling and Control
Reagents (Affymetrix). The labeled RNA was then fragmented and
hybridized to HG-U133A 2.0 oligonucleotide arrays (Affymetrix Incorpo-
rated) according to Affymetrix protocols. Using the Affymetrix Power
Tools Package (http://www.affymetrix.com/partners_programs/programs/
developer/tools/powertools.affx), the qualities of all microarray data were
evaluated by the proportion of present calls and 3�/5� intensity ratios of
glyceraldehyde-3-phosphate dehydrogenase/ACTIN derived from the array
intensity data (supplemental Table 2). All arrays with more than 20%
present calls were included in the analysis regardless of 3�/5� intensity
ratios of glyceraldehyde-3-phosphate dehydrogenase/ACTIN. The CEL
file of each sample was preprocessed individually using robust multiar-
ray analysis (RMA) as described in “CEL file preprocessing.” The CEL
files for these microarray data are available at http://www.bch.com.
cn/xy/BCH_ALL_microarray_data.rar.30

Pooling of 5 normal bone marrow samples

Total RNA from the 5 non-ALL BM samples was extracted and purified as
described in “Gene expression profiling.” Then the total RNA samples were
pooled together using equal amount from each sample. A total of 10 �g was
used for a single microarray hybridization.

Differential gene expression

Differentially expressed genes were identified using the RankProd program
(Bioconductor).31

Text mining

We searched the PubMed abstracts for the co-occurrence of the genes with
the term “leukemia” or a subtype name (eg, “BCR-ABL”). To test the
significance of co-occurrence between a set of genes with the disease term,
we randomly selected 100 sets of genes of the same number and from the
same gene pool where the real gene set was obtained. After 100 such
simulations, the empiric P value was taken as the number of simulations
that had equal or more co-occurrences than the real gene set.

Table 1. Six major subtypes of ALL

Subtype Occurrence, % Clinical character

t(9;22)(BCR-ABL) 2-3 High risk

t(1;19)(E2A-PBX1) 5 Low risk

t(12;21)(TEL-AML1) 16-22 Normal ALL low risk

t(4;11)(MLL) 5-8 Infant ALL high risk

Hyperdiploid�50 25-35 Normal ALL low risk

T-ALL 10-13 T-ALL moderate risk

ALL indicates acute lymphoblastic leukemia.
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Quantitative PCR to validate gene expression measurements
by microarrays

Total RNA were extracted using Trizol (Invitrogen) and reverse transcribed
with RevertAid First Strand cDNA Synthesis Kit (Fermentas) according to
the manufacturers’ instructions. The gene expression levels were quantified
with SYBR Green Real Time PCR Master Mix (TaKaRa) on iQ5 Real-Time
PCR Detection System (Bio-Rad). ACTIN was used as internal control. The
primers used are listed in supplemental Table 3. The expression level of
each gene in the leukemic samples was quantified as a ratio relative to the
average expression level of the gene in 5 normal samples. All RNAs for
quantitative PCR (qPCR) were from the same patient samples as in the
microarray assays but isolated independently from the cryopreserved
mononuclear cells.

Identifying TF-binding motifs for each group of differentially
expressed genes

We used the STORM software32 (CREAD) to identify TF binding motifs
based on the position weight matrix from the TRANSFAC18,19 and
JASPAR20,21 databases within the 1-kb sequences upstream of transcrip-
tion start site of the differentially expressed genes (obtained from
University of California Santa Cruz hg1833), using the 1-kb sequences
upstream of the transcription start sites of 1000 randomly selected genes
as background. A P value less than .00001 was used as the criterion for
the presence of a motif.

Results

Marker gene selection for 6 major ALL subtypes

We first investigated whether we can improve the subtype classifi-
cation using more samples and a different marker selection method.
We collected 3 ALL microarray datasets with a total of 535 samples
(supplemental Table 4). The first dataset produced using Affy-
metrix HG-U95Av2 contains 335 samples.11 The other 2, produced
using Affymetrix HG-U133A microarray, contain 132 and
68 samples.12,13 All the samples in these datasets have been
experimentally classified into 6 known subtypes and 1 unknown
(others) subtype. Our goal is to find the minimal number of marker
genes to assign a sample to its determined subtype with the
maximal accuracy.

Many methods can be or have been used to build a classifier, for
example, Support Vector Machine (SVM),34,35 Prediction by Collec-
tive Likelihoods,36 decision tree, k-Nearest Neighbor (k � 1),37

Naive Bayes,38 and so on. However, candidate marker genes have
to be selected by some arbitrary cutoff, such as a Student t test or
	2 test P value, before their expression profiles can be used to train
the classifiers. A recent improvement of SVM, named Support
Vector Machine–Recursive Feature Elimination (SVM-RFE),28

circumvents this problem by recursively selecting the most impor-
tant features/genes for classification while running the SVM
classifier, in addition to constructing classification models like
other machine learning algorithms. Because of this major advan-
tage of SVM-RFE over the other machine learning methods, we
used it to build our classifiers.

For clinical diagnosis, each sample needs to be analyzed,
classified, and diagnosed individually without many other samples
being analyzed in parallel. To maximally simulate the clinical
diagnosis setting, samples were analyzed individually instead of all
together to minimize the statistical background reduction effect of
large sample size.

We labeled the samples of a subtype “positive” compared with
the rest of the “negative” samples that do not belong to the subtype.

We then used MSVM-RFE,39 an extended version of SVM-RFE,
for multiclass classifications, to find the genes that best separate
each subtype from the rest of the samples and to construct
classifiers. We first normalized Yeoh et al’s data, which are on a
different platform (Affymetrix HG-U95A) from that of all the other
datasets (HG-U133A), based on Ross et al’s data (“Data normaliza-
tion between different microarray platforms” in “Methods”). Then,
starting with a pool of 9116 probe sets, which could be mapped to
unique genes and were common between HG-U95A and HG-
U133A, we used the within-sample expression intensity ranks of
the genes selected by the previous iteration as input values to
construct the classifiers (“Searching for the best minimal set of
gene markers” in “Methods”). This accommodates expression
measurement variations between samples and the lack of statistical
comparison during clinical diagnosis.

When constructing the classifier, we used 10-fold cross-
validation to determine the accuracy of the classifier, which was
defined as the fraction of correctly classified samples within all
samples tested. The average accuracies over the 10 tests were used
as criteria for classifier selection. We first selected the top 66 genes
of each fold (group), which is the minimal number of genes
required to achieve a 93% average accuracy among each of the
10 folds using SVM-RFE, and combined these genes as candidates
(“Searching for the best minimal set of gene markers” in “Meth-
ods”). Then, based on the occurrence frequency, we further reduced
the number of marker genes using the classification accuracy of
97% as a cutoff (“Searching for the best minimal set of gene
markers” in “Methods”). The best classifier combination contains
62 genes (supplemental Table 5).

The classifier has an overall accuracy of 97.6% by 10-fold
cross-validation among the 535 samples, with only 13 of the
535 samples misclassified (Table 2). This prediction accuracy is
slightly higher than the classifiers found by Yeoh et al and Ross et al
(96% on 335 samples and 97.2% on 132 samples, respectively),
with similar number of marker genes to those used by Yeoh et al
and much fewer than by Ross et al (120-300 genes).11,12 It should
be noted that the more samples and datasets included, the more
difficult to achieve high cross-validation accuracy with few genes.
So cross-validation accuracy tends to overestimate a classifier’s
performance on a small sample set. Hoffman et al have identified a
predictor of 26 genes with a prediction accuracy of 98% on
104 samples without the others samples,13 which do not have
uniform expression profile and are the most difficult to predict
(Table 2). Excluding the others samples, our classifier’s prediction
accuracy is 99%. The 62 marker genes are associated with the
GO14,15 (Gene Ontology) terms and the KEGG16,17 (Kyoto Encyclo-
pedia of Genes and Genomes) pathways related to leukocyte
development and motility (Table 3, supplemental Table 5).

Table 2. Cross-validation accuracies of our 62-gene classifier for
each subtype on the 535 white children’s samples

Subgroup Accuracy, % Sensitivity, % Specificity, %

BCR-ABL 99.8 97.1 100

E2A-PBX1 100 100 100

Hyperdiploid�50 98.3 92.9 99.5

MLL 99.8 97.9 100

Others 97.6 97.3 97.6

T-ALL 100 100 100

TEL-AML1 99.6 99.0 99.8

Total accuracy � 97.6%. Sensitivity � true positive/(true positive � false nega-
tive). Specificity � true negative/(true negative � false positive).
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To visualize the classification power of the 62 classification
marker genes, we applied an unsupervised 2-dimensional hierar-
chic clustering algorithm on the expression profiles of the 62 genes
across the 535 samples. Remarkably, by only 62 genes, the 6 major
ALL subtypes are clearly segregated, with samples of each subtype
clustered together (Figure 1A). Interestingly, these markers also
separate the unclassified others subtype into 4 major subgroups,
with 1 subgroup having similar expression profiles to BCR-ABL.
Den Boer et al have reported finding one such subgroup associated
with bad prognosis.40 However, the 535 published samples do not
contain prognosis information to allow us to validate Den Boer
et al’s findings.

Validation of the classifier’s performance on a new Chinese
children’s ALL sample set

Thus far, all the children’s ALL samples were derived from white
patients. It is not known whether a classifier derived from whites
is applicable to a completely different and independent patient
population, such as the Chinese ALL children. We therefore
collected 100 bone marrow samples from Chinese ALL children,
extracted mRNAs, and measured the level of mRNAs using
Affymetrix HG-U133A 2.0 microarray. Based on clinical diag-
nosis, we also categorized the samples into 5 of the 6 subtypes
described in Table 1 and traced the 5-year relapse status of all
100 patients.

Due to the storage condition of our samples, we were unable to
use flow cytometry to experimentally decide the “hyperdiploid�50”
subtype so it was mixed with the others subtype clinically. A total of
44 such mixed samples were combined as a set of “no fusion B-ALL”
samples. Among them, our classifier predicted 24 to be hyperdip-
loid�50, 18 to be others, and 2 mistakenly as TEL-AML1. Another
misclassification was a BCR-ABL sample predicted as others. Estimated
from the cross-validation results within the white children’s samples
(9 samples misclassified between the hyperdiploid�50 and others
subtype), an additional 2 misclassified samples would appear if we had
distinguished the hyperdiploid �50 from others, thus leading to an

estimated approximately 95% overall accuracy for our classifier among
the 100 Chinese samples (Table 4 and Figure 1B). Previously the
classifiers needed to be retrained every time when encountering a new
dataset,41 however, our gene expression rank-based classifier was
directly applied to the new samples without the need to retrain them
using the new samples. This made it possible to use the same classifier
for any individual future sample, as required by real-world clinical
diagnosis. We also found 6 samples of the predicted others subtype in
the Chinese patients having expression profiles similar to BCR-ABL
subgroups based on the 62 classification marker genes (Figure 1B).
However, only 2 of the 6 patients relapsed within 5 years after diagnosis
and treatment, unlike the 79.2% relapse rate reported by Den Boer et al
for a Dutch patient group.40

Differentially expressed genes in each ALL subtype

Marker genes, although useful for clinical diagnosis, might not
reflect the underlying molecular mechanism of the development of
different ALL subtypes. We therefore tried to infer the potential
regulatory network that gives rise to the subtype-specific expres-
sion patterns for each ALL subtype. As marker genes are only a
small subset of differentially expressed genes with the largest
differences among subtypes, we first tried to identify the full set
of the most significantly differentially expressed genes of each
subtype compared with the rest of ALL samples using the
535 white children’s samples. For each subtype, the top 50 up-
regulated genes and the top 50 down-regulated genes, compared
with the rest of ALL samples, were selected based on the P value
given by RankProd31 (“Differential gene expression” in “Meth-
ods,” supplemental Materials), which is a nonparametric statistical
method based on a gene permutation model to estimate significance
levels of ranks of fold changes between 2 groups of samples.

We found 15.4% of our selected differentially expressed genes
were up- or down-regulated in one subtype versus all other
subtypes because the genes were oppositely regulated in the rest of
the sample versus the normal control. Strictly speaking, such genes
are not false positives. However, to facilitate the interpretation of

Table 3. Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes’ pathways enriched among the 62 classification marker
genes

Annotation type/ID GO term/KEGG pathway P Fold enriched Gene symbols

GO terms

GO:0005178 Integrin binding .002 20.04 CTGF, ICAM3, ACTN1

GO:0005902 Microvillus .002 52.22 CLIC5, PROM1

GO:0003823 Antigen binding .002 21.54 IGJ, LILRA2, IGHD

GO:0005834 Heterotrimeric G-protein complex .004 23.93 GNG11, GNAI1

GO:0005520 Insulin-like growth factor binding .005 24.98 CTGF, IGF2R

GO:0009611 Response to wounding .005 24.98 CTGF, MDK

GO:0051015 Actin filament binding .007 16.90 MARCKS, ACTN1

GO:0006396 RNA processing .001 12.77 IGF2BP3, RBMS1

KEGG pathway

04810 Regulation of actin cytoskeleton .002 4.78 WASF1, ITGA6, PIK3R3, ACTN1, ARHGEF4

04662 B-cell receptor signaling pathway .002 9.47 JUN, PIK3R3, BLNK

04510 Focal adhesion .003 5.10 ITGA6, COL6A3, JUN, PIK3R3, ACTN1

04512 ECM-receptor interaction .004 6.86 ITGA6, COL6A3, FNDC3A

04660 T-cell receptor signaling pathway .004 6.41 JUN, PIK3R3, ZAP70

04670 Leukocyte transendothelial migration .006 5.14 PIK3R3, ACTN1, GNAI1

04150 mTOR signaling pathway .006 8.46 TSC2, PIK3R3

04650 Natural killer cell mediated cytotoxicity .006 4.55 SH2D1A, PIK3R3, ZAP70

05211 Renal cell carcinoma .009 5.76 JUN, PIK3R3

04640 Hematopoietic cell lineage .01 4.52 ITGA6, CD55

04620 Toll-like receptor signaling pathway .01 4.42 JUN, PIK3R3

04012 ErbB signaling pathway .01 4.57 JUN, PIK3R3

GO indicates Gene Ontology; and KEGG, Kyoto Encyclopedia of Genes and Genomes.
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differentially expressed genes, we removed such genes using the
average expression profile of the 5 normal samples in our new
dataset (“Pooling of 5 normal bone marrow samples” in “Meth-
ods”), which has not been available in any previous studies. Only
the genes that had RankProd P value less than .05 compared with
the normal control were kept, and the vacancies left by the removed
genes in the top 50 list were then filled by the next lower ranked
genes. A total of 132 genes were thus replaced. At the end, all of the
differentially expressed genes for every subtype had an estimated
false discovery rate (given by the “percentage of false positives”
[“pfp”] parameter31) of 10�4 or less compared with the rest of
ALL samples.

For all 6 major ALL subgroups, we identified a total of
418 differentially expressed genes, many of which were shared by

more than one group. Among these 418 genes, 39 overlapped with
the 62 classification markers we identified (supplemental Table 6).
The top 50 up-regulated genes of T-cell ALL are enriched in genes
of the “T-cell receptor signaling pathways,” and the top 50 up-
regulated genes of TEL-AML1 subtype are enriched in “MHC
class II protein complex” (supplemental Table 7).

Validation of differentially expressed genes by qPCR

The expression levels of 10 genes on 10 different Chinese
samples determined by qPCR generally agree very well with
the microarray measurements (R2 from 0.695-0.946; Figure 2A,
supplemental Table 8). We also selected for qPCR validation
8 genes that were determined by RankProd as significantly
differentially expressed (pfp 
 10�4) between 5 TEL-AML1
samples and 5 E2A-PBX1 samples from the Chinese children’s
ALL microarray data. Four of these 8 genes, CLIC5, PCLO,
PTPRK, SOCS2, were up-regulated in TEL-AML1 and down-
regulated in E2A-PBX1, whereas the other 4 genes, ANKRD15,
FAT, NID2, TRIB2, were the opposite. One-sided t test con-
firmed that all 8 genes were also significantly differentially
expressed when their expression levels were quantified by qPCR
(P 
 .05, Figure 2B). These differential expression patterns of
the 8 genes are also similarly observed among white children’s
samples (Figure 2B). These results confirmed the high quality
of our microarray data as well as the validity of our analy-
sis methods.

Figure 1. Clustering visualization of the discriminating effects
of the marker genes on white and Chinese children’s ALL
samples. (A) Hierarchical clustering of 535 diagnostic white chil-
dren’s ALL samples (columns) from 3 published datasets using the
62 classification maker genes (rows). (B) Hierarchical clustering of
the new 100 diagnostic ALL samples (columns) using the same
62 classification maker genes (rows). Hyperdiploid with more than
50 chromosomes (Hyperdiploid�50) samples in panel B are compu-
tationally predicted rather than being experimentally confirmed as in
panel A. The expression value for each gene is indicated by color
intensity, with red representing high expression and green represent-
ing low expression.

Table 4. Classification accuracies of our 62-gene classifier for each
subtype on the 100 Chinese children’s ALL samples

Subtype Accuracy, % Sensitivity, % Specificity, %

BCR-ABL 99.0 83.3 100

E2A-PBX1 100 100 100

MLL 100 100 100

No fusion B-ALL* 97.0 95.5 94.6

T-ALL 100 100 100

TEL-AML1 98.0 100 97.2

Total accuracy � 97.0%, which was calculated without classifying the hyperdip-
loid�50 subtype. Sensitivity and specificity are defined as in Table 2.

ALL indicates acute lymphoblastic leukemia.
*Hyperdiploid�50 and others.
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Potential regulatory network for each ALL subtype

To find TFs that might be responsible for the subtype-specific
differential gene expressions, we first derived potential regulatory
interactions between a TF and the differentially expressed genes by
the presence of the TF binding motifs in upstream 1-kb sequences
of the differentially expressed genes (“Identifying TF-binding
motifs for each group of differentially expressed genes” in
“Methods”). We also used computationally predicted functional
interactions22 among all differentially expressed genes (including
the marker genes) as potential functional relationships among these
genes. To identify the interactions relevant to subtype-specific gene
expressions, we kept only interactions linking 2 transcriptionally
correlated or anticorrelated genes among the 100 Chinese ALL
samples (Pearson correlation coefficient � �0.29 or 
 �0.22 cor-
responding to the top 10% or the bottom 10% of the Pearson
correlation coefficients between random gene pairs). The potential
interactions among differentially expressed genes and their regulat-
ing TFs were visualized as 6 regulatory networks, one for each
ALL subtype (supplemental Figure 1). Details of the networks are
described in the supplemental Materials (supplemental Figure 1
and supplemental Tables 9-11).

If the TFs were indeed regulators of subtype-specific gene
expression, we should expect that they are even more likely to be
associated with ALL and its subtypes than the marker genes, and
that the more genes in a subtype-specific network a TF targets, the
more likely the TF is associated with the disease. We defined hub
TFs as the TFs that have out-degree of 4 or higher, corresponding
to top 10% of TFs with the highest out-degrees. Among the entire
21 hub TFs in our networks, 76.2% (16 of 21) are known to be
related to leukemia (supplemental Table 9), which is much higher
than the proportion among nonhub TFs (55.8%, 101 of 181), or that
among other human TFs that have binding motifs defined in the
TRANSFAC18,19 and JASPAR20,21 databases (47.0%, 55 of 117). In
contrast, only 35.5% (22 of 62) of the classification marker genes
and 42.8% (179 of 418) of the differentially expressed genes are
known to be leukemia related (Figure 3). These data suggest that
the hub TFs in our predicted regulatory network potentially play
very important regulatory roles in the development of ALL.

Figure 2. Microarray and qPCR measurements of genes between TEL-AML1
and E2A-PBX1 subtypes. (A) Linear regression of expressions measured by qPCR
(x-axis) versus those by microarray (y-axis) of NOTCH1, HDAC9, ANKRD15, CLIC5,
FAT, NID2, PCLO, PTPRK, SOCS2, and TRIB2 in 5 TEL-AML1 samples and
5 E2A-PBX1 samples. Linear regression R2 of each comparison is shown above the
corresponding curve. (B) The average expression level of 8 differentially expressed
genes in 5 TEL-AML1 or 5 E2A-PBX1 samples measured by qPCR (top panel) or by
microarray (middle panel) on the same Chinese ALL samples or on white children’s
samples of the same subtypes (bottom panel). The genes were ordered by the
difference between the average expression values of TEL-AML1 and E2A-PBX1
samples determined by qPCR (from low to high). The height of each bar represents
the average expression level of a gene in a sample group, and the whisker represents
the standard deviation. The 1-sided t test P values between the gene expression
values of the 2 ALL subtypes are indicated above the paired bars for each gene.

Figure 3. The rate of literature cocitation with the term “leukemia” within
different gene groups. The proportion of genes cocited with the term leukemia is the
highest among hub TFs in the regulatory networks (21 genes), followed by that of
nonhub TFs in our regulatory networks (181 genes), and then those of other human
TFs that have binding motifs annotated in the TRANSFAC and JASPAR databases
(117 genes), differentially expressed genes (418 genes), and classification markers
(62 genes), all of which are significantly higher than the proportion within all genes
available on both Affymetrix HG-U133A and HG-U95 microarrays (8178 genes).
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Discussion

In this study, we first improved gene expression–based ALL
subtype classification by compiling and mining a large compen-
dium of samples and using a different marker selection approach,
which together led to a high accuracy classifier that can be directly
applied to a completely independent sample. Unlike previously
reported classifiers,11-13 ours can take a single sample and make a
prediction based solely on the relative expression ranks among the
marker genes without consulting the signal distribution of other
parallelly processed samples, which is important when dealing with
brand new ALL samples. Hoffman et al13 have obtained a one-time
accuracy of 92.6% (without the others group) on a 120 marker gene
classifier that has been trained on an old dataset and tested on their
new dataset.13 As cross-validation accuracy in the old dataset has
not been tested, it is not known whether there has been a drop of
accuracy between their training and test data. In any case,
compared with another classifier trained and tested on the old
dataset alone by cross-validation, they have shown classifiers
generally do not perform as well across datasets as within a dataset.
However, our classifier, trained and cross-validated on a panel of
535 white children’s samples with very high accuracy, can be
applied without any modification to a completely independent set
of Chinese patient samples to also achieve very high accuracy. This
has been unprecedented thus far in the quest of a truly practical
pediatric ALL classifier.

Testing on such an independent sample set also indicates that
the second step of selecting the most frequently found markers
from 10 different cross-validation groups is necessary to avoid
model overfitting. A single SVM classifier trained on all data
together could have very high cross-validation accuracy within the
dataset, but performed badly on our independent new dataset (data
not shown).

We also computationally predicted the potential regulatory
networks for the 6 major subtypes and validated the ALL regula-
tory roles of the predicted transcription regulators through litera-
ture mining. The networks provide hints for potential regulatory
mechanisms and for new perspectives on clinical treatment of
pediatric ALL, which await further functional assays to confirm.
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