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Abstract 
Embryonic development and stem cell differentiation, during which 
coordinated cell fate specification takes place in a spatial and 
temporal context, serve as a paradigm for studying the orderly 
assembly of gene regulatory networks (GRNs) and the fundamental 
mechanism of GRNs in driving lineage determination. However, 
knowledge of reliable GRN annotation for dynamic development 
regulation, particularly for unveiling the complex temporal and spatial 
architecture of tissue stem cells, remains inadequate. With the advent 
of single-cell RNA sequencing technology, elucidating GRNs in 
development and stem cell processes poses both new challenges and 
unprecedented opportunities. This review takes a snapshot of some of 
this work and its implication in the regulative nature of early 
mammalian development and specification of the distinct cell types 
during embryogenesis.
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Introduction
In recent years, stem cells and stem cell-based translational  
applications have been recognized as a promising strategy in 
the future of medicine to tackle incurable situations by conven-
tional treatment (for example, neural degenerative diseases and 
organ failure). However, one of the major obstacles for stem cell  
therapy is the low purity with low efficiency in obtaining func-
tional cells because of the lack of a complete understanding of  
in vivo stem cell lineage (that is, the normal developmental  
processes), which generates the authentic and functional cell  
types with high efficiency.

Embryonic early development is tightly controlled by intrinsic 
and extrinsic factors. The activity of the transcription factors  
(TFs), microRNAs, and related gene regulatory networks  
(GRNs)—as significant intrinsic regulators—is essential for the 
maintenance of pluripotent states and orchestrated specification 
of progenitor fates. However, despite accumulated studies in  
molecular, cellular, and animal levels that have profoundly 
revealed the key players during early development, the dynamic  
interaction of GRNs—with their large number of components 
and even larger number of potential interactions between those 
components—demands a systematic and high-dimensional  
approach. Moreover, building detailed predictive computational 
models of GRNs based on the high-dimensional data is challenging.

In this article, we briefly review the regulation of early develop-
ment and focus on recent advances of enabling technologies 
and methodologies—for example, single-cell RNA sequencing  
(scRNA-seq) and spatial transcriptome—in characterizing the 
GRNs of early embryo development.

Cell fate determination and lineage specification of 
early embryo development
Early embryo development in vertebrate animals is conserved 
in molecular regulations1. In mouse embryo development, for  
example, the zygote cell undergoes sequential cell divisions and 
two major cell fate segregations before proceeding to germ layer 
determination. The first lineage segregation occurs shortly after 
fertilization, during which the totipotent blastomeres give rise 
to the inner cell mass (ICM) and the trophectoderm. ICM cells 
are a pluripotent cell population from which all cell types in the 
embryo proper, as well as tissues of the extraembryonic fetal  
membranes, will be generated, while the trophectoderm will  
contribute to tissues of the fetal components of placenta. The  
ICM gives rise to the epiblast and the primitive endoderm at 
the second lineage segregation. Afterwards, the embryo goes  
through a continuum of pluripotent states such as the continuous 
transition from naïve, formative to primed pluripotency2 and  
forms the primary germ layers that eventually set the body plan3.

The remarkable similarity in the stem cell behavior of animal  
species during periods of early embryonic development points 
to the existence of an inherent conserved molecular principle  
underpinning the cell fate determination4,5. It is now known that  
during this complex process, stem cell hierarchical systems are 
established with step-wise restricted differentiating capacities 
following the orchestration of transcriptional regulation, through 

which the encoding and coordinating morphogenetic outcomes 
are attained1,6. Moreover, there exist intricate causal relationships 
between the cell type-specific GRNs and the phenotypic outputs 
during embryo development and stem cell differentiation, making 
the understanding of gene regulation a demanding task.

Systematic approaches to study transcription 
regulation for the development process
The particular architecture and dynamics of cell type-specific 
GRNs that contribute profoundly to tissue organization during  
development have been conventionally studied by a gene-by- 
gene approach (for example, genetic manipulation and lineage  
tracing). A compendium of TFs and molecular determinants  
that are involved in pluripotency maintenance and cell fate 
determination has been extensively described (summarized 
in 7, 8). Though limited by the inherent incompleteness of  
low-throughput methods, these factors have been corner-
stones for high-throughput and systematic studies to build 
reliable networks and to verify computational modeling and  
simulation.

Molecular characterization of cell identity and the annotation of 
the GRNs using next-generation sequencing technologies have  
opened up new avenues to dissect the developmental events  
and reconstruct the cell lineage in unprecedented detail. The 
high volume of data enables the possibilities of understanding 
gene regulation for cell programming and reprogramming in an  
unbiased manner, which in many cases greatly facilitates the 
discovery of new findings and novel players3. For example, the 
state of stem cell pluripotency is stabilized by an interconnected 
pluripotency gene network consisting of TFs, TF downstream  
targets, and microRNAs9–11. Stem cells integrate external signals 
and internal molecular programs to exert control over the  
decision between self-renewal and differentiation. The GRNs in 
this context have profound implications for differentiation and  
trans-differentiation10. Accordingly, a systematic integration of 
the network biology platform named CellNet enables directed 
and enhanced cell fate conversion by reconstruction of cell  
type-specific GRNs and regulatory nodes that determine whether 
engineered cells are equivalent to their target tissues12,13.

Compared with embryo development of a few cells in the first 
two cell fate decisions, there is combinatorial activity of GRNs  
that is deployed in the temporal and spatial context to ensure 
the transition and exit of the multipotent epiblast from pluripo-
tency to lineage differentiation at gastrulation stages14–17.  
Genome-wide transcription activity underlining gastrulation 
and organogenesis has been profiled and the results indicated 
that there are distinctive and coordinated switches in the gene  
expression patterns18. However, as many GRNs are partitioned 
and regionalized in a spatially ordered manner to proclaim the 
cell fates, it is vital that the GRN profiling be revealed in the  
dynamic embryonic positions19. To this end, a spatially resolved 
transcriptomic analysis based on laser microdissection in 
the mid-gastrulation mouse embryo pinpointing the discrete  
transcriptomic profiles and signaling network that establish the 
anterior–posterior patterning has been reported20. This analysis 
provided a proof-of-concept model that GRN organization in real 
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space can be interrogated and correlated to diversified cell fates, 
which enhances the understanding of development regulation in 
native environmental settings, as happens in vivo.

Recently, accumulating evidence suggested that epigenetic  
modifications on chromosome structure and accessibil-
ity are highly relevant for the establishment of the GRN21,22.  
Development-related TF genes can be modulated by chro-
matin states, and an intricate interaction between these two 
has been shown to be essential for proper stem cell differen-
tiation and germ layer specification15. A combination analysis 
of GRN, epigenome, and signaling network thus constitutes the  
quantitative understanding of the development process.

Single-cell approaches to study transcription regulation 
for the development process
Developmental events do not take place abruptly. In most cases, 
complex mixtures of molecular behaviors are tightly coupled 
and happen sequentially during cell fate determination and  
pluripotency exit, making conventional GRN analysis based 
on physically separated cell populations very challenging. 
The strictly controlled and orderly changes in cell identity  
transition presume that there is a smooth and continuous cell 
status embedded in single cells. Therefore, the cutting-edge  
single-cell technologies, which now can assay RNA, DNA, DNA 
methylation, histone modifications, and chromosome accessibil-
ity of thousands of single cells simultaneously, have become a 
revolutionary tool to capture continuous changes and decipher  
GRNs in the developmental process23.

Driven by and reflected in molecular changes of GRNs, cells 
adopt their distinct fates following an asynchronous branch-
ing pathway of development as depicted in Waddington’s  
landscape24. If enough cells are analyzed, the transition paths 
to the terminally differentiated cell types of single cells (that is, 
developmental trajectory) can be reconstructed by calculating  
transcriptomic similarity and distances. Therefore, it is vital that 
the proper sequencing strategy with consideration of sampling  
size, tissue complexity, and sequencing depth has been employed 
to precisely define the developmental tree. For example, greater 
sequencing depths and more captured single cells are required 
for regulatory network analysis of the developmental process  
with complex branches.

With a large enough number of single cells representing poten-
tially omnipresent states, pseudotemporal ordering algorithms 
have been developed to place cells along the developmental 
trajectory to reveal the lineage relationship that is encoded in 
the gene expression similarity. Various computational tools  
based on this assumption have been developed to model the  
developmental process and single-cell behaviors in scRNA-seq 
data25. For example, Monocle reduces the data dimensionality 
into essential ones and takes advantage of the minimum span-
ning tree to calculate the developmental path26. Diffusion  
pseudotime based on diffusion-like random walk distances 
was applied to map developmental branching decisions27.  
Importantly, as spatial information significantly contributes to 
the cellular states, pseudospace can be potentially uncovered by  

using a similar approach28. However, these pseudotime meth-
odologies encounter difficulties in accurately reconstructing  
branching trajectories in the event that more than one path derives 
from a single point or from multiple origins, as often happens 
in in vivo development (as shown in recent studies29,30). The 
main assumption and an intrinsic limitation of the pseudotime  
reconstruction is that the gene expression similarity reveals the  
lineage relationship, which sometimes is not real, as there are 
discontinuous cell states, such as asymmetrical cell division31,  
not to mention that many transcriptome similarities, such as 
common cell cycle or metabolic states32,33, are irrelevant to  
lineage relationships and that factors other than the transcrip-
tome, such as metabolism regulation and splicing regulation, 
are also vital for lineage differentiation34–37. Moreover, the  
performance and robustness of these pseudotime methods are  
difficult to benchmark because of large diversity in the out-
putted data structures and the lack of authentic experimental  
replicates. In addition, confounding factors, such as cell cycle 
phases, must be excluded in such single-cell transcriptome 
similarity-based trajectory reconstruction32. This, however,  
precludes the study of the role of the cell cycle in differentia-
tion and development. To circumvent such a limitation, Sun et al.  
developed a method to reconstruct the single-cell develop-
mental trajectory by using matching cell population data as an 
external reference; using such an approach revealed that the  
M-phase exit check point and its regulation control neural  
differentiation speed at the single-cell level33. Another advantage 
of the cell population reference-based trajectory inferences is 
that the time of differentiation is no longer a pseudotime but a 
predicted time scaled to and benchmarked by the real different  
time33.

Coupling information from different expression modalities 
along developmental trajectories with transcriptional regulation  
possibly enables the delineation of cell hierarchy and rare  
intermediate cell states and unveils the regulatory networks in  
many details. To this end, a variety of computational methods 
for inferring GRNs with single-cell data have been rigorously 
tested. For instance, to reveal the regulatory network from  
single-cell data, SCENIC (single-cell regulatory network infer-
ence and clustering) defines the cell states via binarization of 
the single-cell data and links the co-expression modules with  
cis-regulatory sequences. The regulon activity was constructed 
and scored in each cell. The regulatory network based on scored 
regulon facilitates a mechanistic interpretation of the data because 
of the inclusion of motif information38. This method has been  
exploited to guide the identification of TFs and cell states39. 
Boolean simulation models randomly pick genes and toggle 
them asynchronously to predict the cell fate transition and  
heterogonous cell response, which has been used to recapitu-
late signal-dependent cell differentiation40. Weighted gene 
co-expression network analysis (WGCNA) was also used to 
construct the regulatory network, to determine functional key  
players of embryonic development, and to uncover potential  
functional modules41,42. Connection specificity index analysis 
takes inputs of the gene co-expression matrix to identify signifi-
cant interaction-profile similarities and define modules of genes 
with similar profiles43, where gene pairs with a cutoff above  
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statistically significant relationships result in a relevance network 
shown in the graph matrix. The edges in the matrix between 
genes denote potential interactions. The positive edges defined 
by a positive correlation indicate a potential activation, and  
negative edges indicate a potential inhibitory relationship44. 
With this analysis, a spatially interacted TF network has been 
shown in establishing the anterior and posterior patterning during  
mouse gastrulation20, and TFs in maintaining single-cell lineages 
were also collated45.

The challenges for gene regulatory network analysis 
for single cells
GRNs are essentially dictated by the genetic hierarchy of the TF 
network, cis-regulatory elements, and downstream targets. In  
this regard, critical experimental validation by various pertur-
bations should be combined to test the computational model.  
However, GRNs inferred from single-cell data are prone to be  
difficult in cross-validation because of the inherent stochastic  
nature of single cells. First, individual cells have a variable mRNA 
content that is unpredictable, and transcription activity in single 
cells fluctuates frequently; both contribute to the complexity and 
noise of scRNA-seq data46. Second, the amplification of minimal  
RNA molecules also introduces technical noise and batch  
effects. Although there are improved methods to tackle the  
problems by using unique molecular identifiers or a 3′ targeting 
sequencing strategy47, it remains difficult to distinguish tech-
nical noise from genuine biological variability that contains 
valuable information. Third, the constitution and quantitative  
impact of different sources of noise have not been systemati-
cally evaluated. These kinds of confounding factors can pro-
foundly alter the structure of GRNs. Finally, the GRN in the native  
setting (that is, with the inputs from spatial and environmental 

interactions) has not been explored effectively (Figure 1).  
Available methods rely on known spatial landmarks or compu-
tationally simulated spatial features to trace single cells to their 
spatial origins48–51. It is important that de novo identification of  
spatial coordinates and location mapping based on an unbiased 
method shall be established. In this regard, Peng et al. applied 
laser microdissection to systematically measure the gene expres-
sion profiles in the real location of mouse embryos and provided a  
zip-code utility to map single cells to their original position in 
the embryo20. In the future, with more computational models  
developed, a framework to infer GRNs and their dynamics in 
driving the sequential cell fate determination during develop-
ment from scRNA-seq data with statistical accuracy can be 
expected52. Toward this end, Sun et al. have adapted a network 
flow optimization method to infer the regulatory events at each  
cellular state transition point33. More systematic and unsuper-
vised methods are expected to deliver a more global view of 
the GRNs driving the spatial and dynamic process of cell fate  
determination.

Outlook
The in vivo embryo uses regulation and canalization at  
multiple layers to safeguard the developmental process. The  
multiscale integration of modular networks of gene expres-
sion and signaling, and their interaction in spatial and temporal  
contexts orchestrated with epigenetic cues, constitute the core 
for developmental mechanisms. Ideally, a comprehensive catalog 
of GRNs and robust computational models would be built  
from ChIP-seq for all cell types and all TFs under various tissue-
specific or developmental processes. However, generating such 
data is time-consuming and often impractical. As genome-wide 
expression profiling is now a routine tool in experimental design  

Figure 1. Gene regulatory network inference from single-cell and spatial transcriptome data. Single-cell RNA sequencing (scRNA-seq) 
data are subjected to dimension reduction and path finding to reconstruct the trajectory. Combined with spatial transcriptome data, the gene 
regulatory networks can be inferred (see ‘The challenges for gene regulatory network analysis for single cells’ section details) to provide 
explanations for the developmental process and spatial patterning.
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and a significant amount of biological perturbation data are 
also available53, it would be necessary for the GRNs to be  
computed by including as many parameters as possible and 
even with the help of next-generation machine learning54. 
Recently, high-resolution epigenetic analytical tools such as  
single ATAC-seq (assay for transposase-accessible chromatin 
using sequencing) and ChIP-seq are becoming a reality55–58, 
and the regulatory mechanism can be revealed with the help of  
multiple-layer omics inputs. With all of these data integrated,  
the GRN in development will be inferred more accurately and  
will be more biologically relevant59.
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ing; GRN, gene regulatory network; ICM, inner cell mass;  
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