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SUMMARY

Experimental large-scale screens for drug reposi-
tioning are limited by restriction to in vitro conditions
and lack of applicability to real human conditions.
Here, we developed an in silico screen in human
in vivo conditions using a reference of single gene
mutations’ non-tissue-specific ‘‘core transcriptome
signatures’’ (CSs) of 8,476 genes generated from
the TCGA database. We developed the core-signa-
ture drug-to-gene (csD2G) software to scan 3,546
drug treatment profiles against the reference signa-
tures. csD2G significantly outperformed conven-
tional cell line-based gene perturbation signatures
and existing drug-repositioning methods in both
coverage and specificity. We highlight this with 3
demonstrated applications: (1) repositioned cate-
gory of psychiatric drugs to inhibit the TGF-b
pathway; (2) antihypertensive calcium channel
blockers predicted to activate AMPK and inhibit
AKT pathways, and validated by clinical electronic
medical records; and (3) 7 drugs predicted and vali-
dated to selectively target the AKT-FOXO and
AMPK pathways and thus regulate worm lifespan.

INTRODUCTION

The biopharmaceutical industry faces 3 major challenges: (1) a

productivity gap between enormous spending in research and

development stages and the disproportionate output of novel

drugs (Ashburn and Thor, 2004); (2) more effective drugs are

needed for complex diseases and aging populations (Wu et al.,

2013); and (3) drugs developed based on in vitro cell assays or

mouse models often cannot be translated to human treatments,

with the majority failing clinical trials for showing no efficacy or

undesirable effects. To speed up drug development and reduce

risks, drug repositioning has gained momentum. Previously

approved drugs have already been tested through clinical trials
Ce
This is an open access article under the CC BY-N
and are well investigated regarding their safety, and many have

other possible applications than those originally intended

(Ashburn and Thor, 2004). Successful examples of drug reposi-

tioning include the use of sildenafil for erectile dysfunction,

thalidomide for severe erythema nodosum leprosum (Ashburn

and Thor, 2004), and all-trans retinoic acid for acute promyelo-

cytic leukemia (Lo-Coco et al., 2013).

Computational repositioning predictions by integrative anal-

ysis of pharmacogenomic data have made significant progress

because they are low cost and overcome many practical

limitations of experimental high-throughput drug library screens

(Dudley et al., 2011). Genome-wide expression profiles or cell

sensitivity in response to drug treatment have been generated,

including the Connectivity Map (CMap) (Lamb et al., 2006), the

NCI-60 Human Tumor Cell Lines Screen, and the Genomics of

Drug Sensitivity in Cancer (GDSC) profiles (Yang et al., 2013).

To take advantage of these perturbation signatures, the idea of

creating gene expression signatures to describe physiological,

disease, or genetic perturbation states has been proposed

(Dudley et al., 2011; Lamb et al., 2006). In this study, by drug re-

positioning, we aimed to reposition a drug to a new target gene

but not to a new disease. Development of a high-throughput

strategy to reposition drugs in humans with high precision is still

challenging, perhaps due to the following obstacles: (1) batch

effects, platform differences, and different tissue and cell back-

grounds make it difficult for integrative analysis; (2) target gene

signatures in existing resources are insufficient to cover known

drug targets (e.g., only �430 transcription factors (TFs) are

included in the Encyclopedia of DNA Elements (ENCODE); and

(3) genetic experiments can be performed only in cell lines or an-

imal models, not in human models. In particular, pattern-match-

ing tools cannot judge whether the similarities or differences

stem from tissue-of-origin backgrounds or relevant or true

drug-gene interactions (DGIs), while confining the searches to

the same tissue or cell type severely limits the number of drugs,

genes, or pathways that can be analyzed.

Here, to remove effects of the background of tissues of origin

and to reposition drugs in a human environment, we constructed

non-tissue-specific core signatures (CSs) from The Cancer

Genome Atlas (TCGA) (Hudson et al., 2010) transcriptomes.
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Figure 1. The Pipeline to Generate CSs for Signaling Genes

(A) Pipeline to construct CSs. Step 1: collect patient samples with mutation of a select gene (gene x) in different cancer types. Step 2: generate mutation-type

signatures of gene x in each cancer/tissue type. Step 3: generate CSs of eachmutation type of gene x. Steps 4 and 5: merge CSs of eachmutation type as the final

CS for gene x and remove tumor background.

(B) Input of frequently mutated signaling genes and output of CSs.

(C) BIC-SKmeans clustering of CS matrix of signaling genes. Enriched signaling pathways and protein types are indicated at bottom. CR, catalytic receptor;

GPCR, G protein-coupled receptor; IC, ion channel; signal, signaling pathways; TF, transcription factor; and VGIC, voltage-gated ion channel.

(legend continued on next page)
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CSs are used to identify drugs whose perturbation signatures

mimic a single gene mutation. Using 3,546 drug treatment pro-

files, we also developed a drug-specificity scoring system to pre-

cisely predict 83,745 DGIs with high targeting specificity. Among

these DGIs, we predicted a psychiatric drug category to inhibit

the transforming growth factor b (TGF-b) pathway, which

comprised 7 drugs to specially target the conserved AKT-

FOXO and 50 adenosine monophosphate-activated protein

kinase (AMPK) pathways, 6 of which were successfully validated

in human cell lines and in Caenorhabditis elegans lifespan as-

says. We also predicted antihypertensive calcium channel

blockers to inhibit the AKT pathway and activate the AMPK

pathway, which are supported by electronic medical records

showing a blood lipid-lowering effect—an expected conse-

quence of AKT inhibition and AMPK activation. Our accurately

in silico repositioned DGIs provide a rich resource for further

exploration.

RESULTS

Generating CSs of Signaling Genes from Cancer
Transcriptomes
Cell signaling pathways, which respond to an extracellular stim-

ulus to regulate gene expression, cell metabolism, and develop-

ment, have been recognized as essential drug targets in disease

treatment (Behar et al., 2013). In different tissues or cell types,

the core pathways and their immediate downstream target

genes often share effectors, but the final output of these path-

ways can be very different (Akhurst and Hata, 2012; Johnson

and Halder, 2014; Siegel and Massagué, 2003). To focus on

and verify the core effects of pathways, we curated 4,895

signaling genes coding for receptors, enzymes, ion channels,

TFs, and components of 8 major signaling pathways (Figure 1B).

While genome-wide reverse genetics is still difficult to perform

in human tissues or cell lines, cancer genomes contain a

naturally occurring pool of genetic mutations for many, if not

all, human genes. TCGA provides thousands of high-quality tran-

scriptomes from human cancer patients and tissue-matched

normal controls in >20 cancer types. Cancer samples with so-

maticmutations in a gene can be used to define its transcriptome

perturbation signature. Furthermore, the abundant variety of tis-

sue origins of cancers provides an opportunity to search for the

common differentially expressed genes (DEGs, or signature

genes) shared by multiple tissues to represent the core effects

of gene mutations without tissue-of-origin background.

Here, we constructed a pipeline with the input of the 4,895

signaling genes to generate CSs using TCGA mutation and tran-

scriptome data (Figure 1A). For each cancer type, patient sam-

ples carrying each type of mutation (e.g., missense mutations,

nonsense mutations, frameshift deletion, frameshift insertion)

in a gene is defined as a genetic perturbation group and

compared with normal controls to detect mutation-type signa-

tures in each cancer type (Figure 1A, steps 1 and 2). Different
(D) Comparison in the directions of expression changes of CSs and GEO convent

perturbation signatures for the same genes in different types of perturbations, co

comparison cases for different types of perturbation are indicated at bottom. Pr

See also Figures S1 and S2 and Tables S1 and S2.
mutation types were analyzed separately because we observed

that they often lead to different expression changes for the same

gene, as shown by the low overlap among different mutation-

type signatures; this suggests that they may probe various

perturbation-type effects of the same gene (Figure S1A). We re-

gard cancers of the same tissue as having the same tissue of

origin and then generating CSs by enforcing overlap across

multiple tissues (Figure 1A, steps 3 and 4;MethodDetails). These

are followed by a CS trimming step, removing 87 DEGs shared

by >50% of cancer types as common tumor background (Table

S1). To reduce data complexity and to exclude undetermined or

alternative explanations, we used only the single gene mutation

CSs for analysis in our study, discarding CSs derived from

samples in which multiple genes are commonly mutated (only

628 multigene signatures versus 2,052 single-gene signatures

when using the 4,895 signaling genes as input, and 1,470 multi-

gene signatures versus 8,476 single gene signatures when using

all human coding genes as input; detailed description and distri-

bution of these multiple hits can be found in Figures S1B and

S1C). In the end, across different tissues, the expression fold

changes of CS genes showed high consistency (Pearson corre-

lation coefficient [PCC] �0.85; Figure S1D), suggesting that they

are indeed non-tissue specific.

Using this pipeline, we obtained CSs for 2,052 of the 4,895

curated signaling genes. More than 98% of them were from

missense mutations (Figure S1E), which mostly occurred in pro-

tein-coding regions, including functional domains, probably

leading to loss of function. For example, according to TCGAmu-

tation annotations, in breast-invasive carcinoma, 82,816/90,489

(92%) of mutations map to functional domains and 2,356/2,585

(91%) do so in acute myeloid leukemia. Only genes related to

tumorigenesis and tumor progression (e.g., TP53) had enough

samples carrying mutation types other than missense mutations

for analysis (R3 mutation samples and R3 normal samples).

Clustering analysis of CSs for the 2,052 signaling genes by an

auto-optimizing Bayesian information criterion (BIC)-SKmeans

algorithm (Zhang et al., 2013) showed 9/13 gene clusters signif-

icantly enriched for Notch, Wnt, TGF-b pathways, G protein-

coupled receptor, catalytic receptor, TFs, and voltage-gated

ion channels, respectively (Figure 1C). Genes in the same path-

ways or with the same function types were automatically group-

ed together. This indicates that CSs can identify and represent

different signal pathways affected by human genetic perturba-

tions and separate them from one another.

To evaluate the validity of CSs, we compared them with 196

conventional signatures generated by single-gene RNAi, genetic

mutants, and overexpression (OE) of the same genes collected

from GEO. A total of 78/114 (68%) of CSs showed significant

overlap with at least one of the corresponding conventional

signatures (p < 0.05 and false discovery rate [FDR]) <0.25, as

determined by gene set enrichment analysis (GSEA) (Subrama-

nian et al., 2005) (Table S2). For all matched pairs of CSs and

conventional signatures, compared to random background,
ional signatures. Precision and sensitivity of CSs to capture GEO conventional

mpared with random background. *, Binomial test p values < 0.05. Numbers of

ecision and sensitivity are as defined in Method Details.
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CSs consistently showed higher precision and sensitivity in

capturing consistent (intersecting) expression change directions

across different perturbations of the same gene (Method Details;

Figures 1D and S2A for examples; Table S2). Similarly, CSs are

also essential for achieving high accuracy in drug reposition (Fig-

ure S2B; Table S2; MethodDetails). These demonstrate that CSs

can consistently represent transcriptome perturbations of a

gene across different experimental methods.

We further examined the proportions of the CSmutations to be

potentially inhibiting, activating a gene, or lacking a clear pattern

based on the comparison to the GEO datasets. When using GEO

mutant and OE data, 42% and 53% of the CSs do not have a

clear direction (neither same nor opposite); but for those having

a clear direction, 81% of them (47%/47% + 11%) showed the

same directions as mutants and 85% (40%/40% + 7%) showed

the opposite directions of OE, implying that these mutation CSs

are consistent with inhibiting rather than activating target genes

(Figure S2C).

Scanning Pharmacological Transcriptomes by CSs to
Reposition Drugs
To use CSs for drug repositioning, we first generated 3,546 drug-

treatment signatures (DTSs) based on CMap, which contains mi-

croarray data mainly for 3 human cancer cell lines treated with

1,309 drugs. Because our CSs are insensitive to tissue-specific

transcriptome changes, they can be directly compared to treat-

ment in any tissue or cell types, thus increasing repositioning

coverage. Therefore, samples from different cell lines were

analyzed separately for each drug. Here, we treat different dos-

ages in each cell line as replicates to increase statistical power.

To evaluate the extent of signature overlap and potential mode

of action of a drug on a gene set, we defined a drug-to-gene

normalized enrichment score (d2gNES) with a plus-or-minus

sign, determined by GSEA, to test CSs against the ranked list

of DTS gene expression changes (Figure 2A; Method Details).

A positive d2gNES score means drugs show the same patterns

as gene mutations. Because most CS-producing gene muta-

tions are probably loss-of-function mutations, a positive

d2gNES score implies that the drug inhibits the activity of the

gene. Conversely, a negative d2gNES implies activation of the

activity of a gene by a drug. As background controls, we gener-

ated random CS gene sets for each signaling gene and repeated

the analysis 1,000 times for each DTS, thereby identifying
Figure 2. Scanning CMap Using CSs for Drug Repositioning

(A) Pipeline to generate d2gNES by scanning drug treatment signatures (DTSs) u

(B) Percentage of GSP and non-GSP DGIs in the top ranking d2gCSI intervals. F

(C) Filtering steps for predicted DGI: original DGIs generated by d2gNES (left), spe

clusters (middle), and with d2gCSIR0.8 (right). Top enriched drug category and g

indicate p < 0.05 for drug clusters. All enrichment in gene clusters are significan

(D) GSEA results of phenothiazine drugs that show similar expression profiles with

mouse palate tissues. Drug structures are shown at top.

(E) The predicted effects of calcium channel blockers (CCBs) on AKT and AMPK p

AKT2 and PRKAA2 genes visualized by a heatmap and previously reported functi

female patients in CCB or another antihypertensive drug group are shown at rig

apolipoprotein A-I/apolipoprotein B ratio; ApoB, apolipoprotein B; BMI, body mas

bilirubin level; TC, total cholesterol; and TG, triglyceride.

Student’s t test p values are indicated. Data are represented as means ± SDs.

See also Figures S3 and S7.
924,357 significant interactions (p < 0.05 and FDR <0.25;

12.7% of all 7,276,392 possible interactions between 2,452

drugs and 1,877 genes).

Clustering of the d2gNES matrix by the BIC-SKmeans algo-

rithm showed that although thousands of drugs and genes

were analyzed, both drugs and genes were automatically clus-

tered into a relatively small and finite number of gene and drug

categories (Figure 2C). The 2,452 drugs were clustered into 13

DCs, with enrichment for antipsychiatric (DC-3 and -4), anti-

infection (DC-0, -3, and -8), hormone control (DC-0, -2, and

-7), and ion transport (DC-8) functions, and regulation of small

metabolites (DC-9), respectively. The DC signatures overlap

with gene clusters (GCs) enriched for central nervous systems

(GC-8), defense against bacteria (GC-8), immune response

(GC-3), and vitamin transport (GC-5), as well as classical path-

ways (e.g., TGF-b [GC-2], nuclear factor kB [NF-kB] [GC-9],

and mitogen-activated protein kinase [MAPK] [GC-3]), signaling

and transcription (GC-4, -5, and -9), chromatin modification

(GC-0 and -6), and cell development (GC-9), respectively; these

are suggestive of activation (Figure 2C, green) or inhibition (Fig-

ure 2C, red) of the GCs by the corresponding DCs. For example,

we found 13 psychiatric drugs (DC-3 and -4) to potentially inhibit

the TGF-b pathway genes (GC-2; Figure 2C). Two of them,

bromocriptine and trifluoperazine, have been reported to inhibit

TGF-b (Figure S3E) (Miyoshi et al., 2008; Zhuge and Cederbaum,

2006). Among the rest, 7 phenothiazine drugs showed a high

chemical structure similarity with trifluoperazine (Figures 2D

and S7). Including trifluoperazine, 6/8 of phenothiazine DTSs

had DEG profiles similar to those of Bmpr1a knockout mouse

embryonic stem cells and 7/8 to those of Tgfbr2 knockoutmouse

palate tissues (Figure 2D). The above results suggest a signaling

pathway target of the phenothiazine drug class and a potential

molecular mechanism for their antipsychotic action.

DC 6 contains many calcium channel blockers (CCBs)

showing AMPK activation (in GC 1) and AKT inhibition (GC 6) sig-

natures. Among the 15CCBs in CMap, 9 (60%)were predicted to

activate the AMPKpathway and 6 (40%)were predicted to inhibit

the AKT pathway according to the d2gNES of the 2 pathways’

representative genes PRKAA2 and AKT2 (Figure 2E). AMPK

activation or AKT inhibition are known to lower blood lipid levels

(Hagiwara et al., 2012; Zang et al., 2004). Although 4 of them are

known to regulate lipid levels (perhexiline, nifedipine, verapamil,

thapsigargin; see Table S4 for details) in mouse or cell-line
sing CSs.

ormula of d2gCSI is shown at bottom. See also Figure S3A.

cific DGIs filtered by greater-than-average d2gNES and d2gCSI across all gene

ene function in each drug and gene clusters are shown at bottom. Red asterisks

t at p < 0.05.

Bmpr1a-knockout mouse embryonic stem cells (mESCs) and Tgfbr2-knockout

athways and clinical effects on blood lipids. The d2gNES values of CCBs for the

ons of CCBs toward AKT and AMPK (left). Blood indices of obese hypertensive

ht. ALP, alkaline phosphatase activity; ApoA-I, apolipoprotein A-I; ApoA-I/B,

s index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TBIL, total
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experiments, whether the other CCBs have antilipid effects is not

known and lack relevant clinical evidence. We therefore

analyzed a series of Han Chinese electronic medical records

(Method Details) and found that among the obese (bodymass in-

dex [BMI] R30) hypertensive female patients without clinical

manifestation of hyperglycemia and hyperlipidemia, and having

never taken hypoglycemic or hypolipidemic drugs, the CCB

treatment group (n = 10, ages 61 ± 9 years, BMI 33 ± 2) showed

improved blood lipid profiles compared to those taking other

antihypertensive drugs (n = 40, ages 57 ± 8 years, BMI 33 ± 2)

(lower total cholesterol [TC], t test p = 0.0944; lower low-density

lipoprotein [LDL], p = 0.0151; lower apolipoprotein B [ApoB],

p = 0.0023; higher apolipoprotein A-I/apolipoprotein B ratio

[ApoA-I/B], p = 0.0072; Figure 2E). The female CCB treatment

group showed lower total bilirubin levels (TBILs) and higher alka-

line phosphatase (ALP) activity (t test p = 0.0386) than the groups

taking other antihypertensive drugs (Figure 2E), which are ex-

pected effects of activating AMPK and inhibiting AKT (Kanazawa

et al., 2008; Mukherjee and Rotwein, 2009; Wegiel et al., 2009).

Except for ApoA-I and TBIL, other indices did not show the

same patterns in males (CCB group: n = 12, ages 55 ± 11 years,

BMI 32 ± 1; other antihypertensive drug group: n = 40, ages

52 ± 11 years, BMI 32 ± 2; Figure S3F), suggesting a gender-spe-

cific anti-blood lipid effect of CCBs in females.

Drug Repositioning with High Specificity
Because the specificity of a drug for a particular pathway or gene

is a desirable or necessary feature of a good drug, we tested 3

scores based on the connection specificity index (CSI) (Fuxman

Bass et al., 2013) to assess the gene-level specificity of a drug

and selected drug-to-gene CSI (d2gCSI; Figures 2B and S3A;

Method Details), which can best distinguish gold standard-pos-

itive (GSP) DGIs (Method Details) and non-GSP DGIs to evaluate

drug-target specificity. Drug repositioning aims to find alterna-

tive targets of existing drugs, making it by definition not neces-

sarily specific to a single target gene, yet possibly gene module

(pathway level) specific. Therefore, using d2gCSI, we only kept

GCs (representing unbiased auto-assembled pathways) having

above-average specificity for different DCs (Figures 2C, S3B,

and S3C; Method Details), then further required each DGI to

have a moderate gene-level specificity of d2gCSI R0.8 against

the rest of the 2,052 signaling genes, which were optimally en-

riched for GSPs (Figure S3D). This left 83,745 DGIs among

1,888 drugs and 1,276 signaling genes—1.2% of all of the

possible DGIs—as specific DGIs. For example, the predicted in-

hibition of TGF-b by phenothiazines is determined as specific,

while inhibition to AKT and activation to AMPK of CCBs are

determined as non-specific. We called our method (including

both d2gNES and d2gCSI steps described above) core signa-

ture drug-to-gene (csD2G) prediction and used the derived

83,745 csD2G DGIs for following the analysis and performance

evaluation (Figure 2C; Method Details).

Performance Comparison to Existing Drug
Repositioning Methods
Currently, the ping-pong algorithm (PPA) (Kutalik et al., 2008)

and multivariate analysis of variance (MANOVA) are the 2 best

methods for drug repositioning. They associate drug responses
528 Cell Reports 25, 523–535, October 9, 2018
with gene expression or mutations in different cell lines to infer

targets. Because the data types used in these previous methods

are different fromCMap andCSs used by csD2G, we considered

the combination of data and corresponding method as a holistic

strategy for comparison (Method Details). Drug and gene sets

shared between strategies were used for performance compar-

ison. Receiver operating characteristic (ROC) curves showed

that csD2G markedly outperformed both PPA (Method Details)

and MANOVA in drug-target prediction (area under the curve

[AUC]: 0.743 for csD2G and 0.676 and 0.659 for PPA; AUC:

0.685 for csD2G, 0.486 for MANOVA; DeLong test p = 0.0367)

(Figure 3A). When focusing only on GSP drug targets, csD2G

also ranked GSP interactions higher than PPA and MANOVA

(t test p = 0.0234 for MANOVA; Figure 3B; Table S3). Our

csD2G also outperformed DeMAND (Woo et al., 2015), which

was designed to elucidate genome-wide modes of action

(MoA) proteins through assessing the dysregulation of their mo-

lecular interactions following drug treatments. It also outper-

formed the recently published L1000 gene experimental drug

perturbation results, which were derived from in vitro cell lines

on 1,000 landmark genes (Subramanian et al., 2017), in both

coverage and accuracy based on the shared drugs between De-

MAND, L1000, and our analysis (Figures 3C and 3D; Table S3).

Functional Validation of Repositioned Drugs
AMPK and AKT-FOXO pathways play critical roles in cancer, ag-

ing, and metabolic diseases (López-Otı́n et al., 2013). Although

highly desirable, there is no small molecule found to specifically

inhibit the insulin-like growth factor 1 (IGF1) pathway or to specif-

ically enhance the activity of the AMPK pathway (Fontana and

Partridge, 2015). We therefore examined the csD2G results for

29 genes in these 2 pathways (Figures 4A and S4A). Clustering

analysis showed that DC-24 and DC-32 had strong and specific

activating signatures for 2 AMPK genes (an AMPK a-catalytic

subunit gene PRKAA2 and a non-catalytic subunit gamma 3

PRKAG3) (Figure 4C) and the FOXO4 gene (with a weak inhibi-

tory signature for AKT2), respectively (Figures 4D and S4B),

among all 27 genes of the pathways examined.

Of the 12 predicted AMPK activators, 3 (25%) are known to

activate AMPK and 1 (8%) is known to extend lifespan (Figures

4C and 4D). In addition, 7 (56%) significantly showed the same

patterns as the known AMPK activators 5-aminoimidazole-4-

carboxamide 1-b-D-ribofuranoside (AICAR) and sorafenib (Fig-

ure 4C; Table S4). For the 22 predicted AKT-FOXO targeting

drugs, 41% are known to influence the pathway, 27% are known

to extend lifespan, and 69% showed the same patterns as the

known AKT inhibitor perifosine (Figure 4D; Table S4). Because

AMPK and AKT are involved in many cancers, we further tested

the potential anticancer effect of these drugs and found that 8/12

(67%) and 20/22 (91%) of the predicted AMPK activators and

AKT inhibitors have significant overlapping signatures, with at

least 1 of 21 TCGA cancer signatures. Among them, 7/8 (88%)

of the AMPKdrugs show opposite expression patterns to at least

1 cancer, and 14/20 (70%) of the AKT drugs show the same pat-

terns (Figures S4C and S4D), suggesting that both categories of

predicted drugs may have anticancer potential.

Inhibiting AKT or activating FOXO and AMPK extends lifespan

significantly in C. elegans (Greer et al., 2007; Paradis and
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Figure 3. Performance Evaluation of csD2G and CSs

(A) ROC curves of csD2G, PPA, and MANOVA for drug-target prediction using shared drug and gene sets. Sensitivity and specificity are as defined in Method

Details. DeLong test p values are indicated.

(B) Comparison of relative ranks of GSP targets predicted by csD2G, PPA, and MANOVA by GSP targets’ relative ranks of shared drug and gene sets. Student’s

t test p values are indicated.

(C and D) Performance comparison of csD2G to L1000 (C) and DeMAND (D). Coverage (y axis) and relative ranks (x axis) of GSP targets predicted by these

methods. For relative rank analysis, only predicted DGIs shared between csD2G and L1000 and between csD2G and DeMAND were used. For L1000, DGIs with

scoreR80 in L1000 knockdown (KD) and overexpression (OE) experiments were used as L1000 predictions according to the original paper. For DeMAND, DGI

predictions based on 3 protein-protein interaction datasets according to the original paper were used.

See also Figure S7 and Table S3.
Ruvkun, 1998). We reasoned that because lifespan extension

cannot be expected to occur from random nonspecific effects,

a lifespan assay is a good assessment for repositioned AKT-

FOXO or AMPK modulators. Therefore, as functional validation

of our predicted 12 specific AMPK activators and 24 AKT

inhibitors, we randomly selected 7 drugs from these predictions

(see Table S4 for details) and tested their lifespan effects in

C. elegans. Six drugs (85.8%) significantly extended the lifespan

(Figures S5A–S5C). The worm pharyngeal pumping rate was not

changed after 3 days of drug treatment, excluding the possibility

of lifespan extension by reduction in food intake (Figure S5E). We

also tested 2 drugs not predicted to be involved in longevity as
negative controls, and both showed no lifespan extension in

the C. elegans lifespan assays (Figure S5D).

Consistent with the high specificity of these repositioned

drugs, these DCs have significantly more literature co-citations

(Qiao et al., 2013), with their predicted target pathways

compared to randomly selected pathways or even to other life-

span-regulating pathways (Figure 4B). They also have relative

fewer off-target pathways co-cited than the average expectation

(Figures 4C and 4D).

To further test the specificity of the repositioned drugs, we

tested their epistasis to their predicted target genes or path-

ways—we tested whether AKT-FOXO-axis (daf-16) and AMPK
Cell Reports 25, 523–535, October 9, 2018 529
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Figure 4. Using csD2G to Predict Drugs that Modulate AKT-FOXO and AMPK Pathways

(A) Heatmaps of csD2G values of drug clusters targeting lifespan-regulatory pathway genes.

(B) Density distributions of normalized co-citation index (CI) of drugs with predicted target pathways, non-target lifespan-regulating pathways, and random

pathways. The 27 aging pathway genes with a csD2G value passing significance cutoff (p < 0.05 and false discovery rate [FDR] <0.25) to a drug were considered

as a predicted target and otherwise as a predicted non-target. A total of 100 randomly selected pathway geneswere used as basal background. For each drug, its

CI to a pathway was normalized to correct for ‘‘star’’ pathways or drugs by first dividing it by the drug’s mean CI to all of the genes in all of the pathways, and for

each gene, dividing it by the gene’s mean CI to all of the drugs.

(C andD) Drug clusters (DC-24 and DC-32) identified to specifically target AMPK (C) or AKT-FOXO (D) pathways. Average values of csD2G for each gene in DC-24

and DC-32 are shown at top. Numbers of co-cited pathways other than AMPK or AKT for each drug cluster are shown at right. Dotted red lines indicate mean of

number of co-cited pathways. DC-24 and DC-32 are indicated in red. Bottom, previously reported targets and lifespan-modulating effects of these drugs, and

expression profile comparison results by GSEA to known AKT or AMPK drugs (AICAR, sorafenib, and perifosine). csD2G values of the drugs to AMPK or AKT-

FOXO pathway genes (PRKAA2 and PRKAG3, AKT2 and FOXO4) are marked on the right.

See also Figure S4 and Table S4.
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(aak-2) mutants abolished their lifespan extension effects. As

predicted, all 6 lifespan-extending drugs were indeed epistatic

to daf-16 or aak-2 (Figures 5A and 5B). We also confirmed that

all 6 directly regulated AKT and AMPK phosphorylation (Figures

5C, 5D, and S5F). In comparison, before removing the tissue-of-

origin background for the 6 lifespan-extending drugs, we were

unable to correctly predict their MoA, and some even showed

the opposite results (Table S5). This further highlights the impor-

tance of removing tissue-of-origin signatures for reliable drug

reposition.

To further experimentally test drug specificity, we tested the

predicted AMPK activators and AKT inhibitors on the lifespan

of both aak-2 and daf-16 mutants, as well as the sir-2.1 mutant,

representing an unrelated lifespan regulatory pathway. Probably

due to the numerous cross-talks between the AKT and AMPK

pathways, both daf-16 and aak-2mutants can block the lifespan

extension of 5 AKT or AMPK drugs (Figures 6 and S6), while 4 of

the 5 tested drugs showed similar lifespan extension in the sir-

2.1mutant in lifespan assays (Figures 6 and S6), which indicates

their overall independence of the sirtuin pathway.

DISCUSSION

Conventional perturbation experiments performed in a particular

cell or tissue capture the downstream responses that are often

mostly context dependent. In contrast, CSs, which are naturally

occurring signatures shared in multiple tissues, can reflect more

upstream, core pathway changes. Thus, we developed a pipe-

line that takes advantage of the vast number of mutations in

various tissue and cancer types to extract transcriptomic CSs

without tissue-of-origin background, which enables efficient

and accurate repositioning of drugs.

Compared to signatures derived from specific cells or tissues,

CSs have the following advantages. First, by removing tissue-

specific background, CSs can be integrated with many data re-

sources from different tissues of origin. Second, while the 2,052

CSswe generated for signaling genes already cover a large quan-

tity of druggable targets, our CS pipeline can be easily extended

to any genes of interest. Overall, we generated 8,476 CSs for all

TCGA mutated coding genes with sufficient mutation frequency

and identified 179,004 specific DGIs (for 1,938 drugs) using these

CSs (Figure S7A). Third, the in vivo naturally occurring mutations

used from TCGA are more relevant to human disease contexts

than are model organisms or artificial cell-based assays.

In addition to developing CS-based predictions, we further

filtered these predictions by drug pathway level specificity

through developing a CSI-based scoring system. These allow

csD2Gs to outperform computational prediction tools PPA and

MANOVA, as well as L1000 signature-based experimental results

for drug target prediction, on either the 2,052 signaling genes or

the total of 8,476 CS-bearing genes (Figures S7B and S7C).
Figure 5. Lifespan Effects of Drugs Predicted to Specifically Target AK

(A and B) Representative survival curves ofC. elegans under treatment of predicte

or AMPK activators (perhexiline, etilefrine, and diperodon; B) for wild-type (N2) wo

were used as blank controls for drugs (DMSO for benfluorex and nocodazole, w

(C and D) Western blots of AKT or AMPK phosphorylation under treatment of pre

See also Figure S5 and Table S5.
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We predicted and validated 7 drugs to specifically target the

AKT-FOXO or AMPK pathway, which are well-known pathways

regulating lifespan, but we await drugs to specifically target

them. Using C. elegans lifespan assays, 6/7 of the predicted

drug treatments were validated to affect this pathway by signif-

icantly extending lifespan, which was blocked by respective

pathway mutants, and through modulating AKT and AMPK

phosphoryalation.

For the purpose of forming a uniform analysis pipeline, we

assumed the mutation signatures obtained from multiple sam-

ples tend to inhibit predicted target genes, which is likely to be

correct for the majority of the cases but may be wrong in some

cases. To ultimately resolve this, an experimental confirmation

of the sign of prediction must be done before it is applied to

drug development, as we did for the AKT inhibitors and AMPK

activators and the calcium blockers.

A major conundrum in drug development is that the majority of

drugs are developed based on in vitro cell assays and mouse

models and consequently fail humanclinical trials for either having

no effect and/or undesirable effects in human subjects. This is

exemplified by the abandoned Eli Lilly anti-b-amyloid drug, sola-

nezumab, after hundreds ofmillions of dollarswere spent in devel-

opment (Carter and Lazar, 2018). Although TCGA data are gener-

ated in pathological conditions, the mutations still occurred in

humans, and the transcriptome changes by the mutations are

also in vivo human conditions. Furthermore, that the TCGAmuta-

tions are natural mutations from diverse genetic backgrounds

makes ourmethod applicable to a diverse human genetic popula-

tion.More important, althoughnotcompletely addressing thedrug

side effects, the drug specificity assessment method we devel-

oped here does reduce side effects by excluding drugs with

non-specific targets. Therefore, in addition to the advantage of

enabling the search for core perturbation signatures sans tissue-

specific background, using signatures from in vivo human condi-

tions leads to a higher probability of our repositioning predictions

to be translatable human drug therapies, as compared to novel

drug searches from in vitro cell line data or even mouse data.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

AKT (pan) Cell Signaling Technology Cat# 4691; RRID:AB_915783

phospho-AKT (Ser473) Cell Signaling Technology Cat# 4060; RRID:AB_2315049

AMPKa Cell Signaling Technology Cat# 2532; RRID:AB_330331

phospho-AMPKa (Thr172) Cell Signaling Technology Cat# 2535; RRID:AB_331250

GAPDH Cell Signaling Technology Cat# 5174; RRID:AB_10622025

Chemicals, Peptides, and Recombinant Proteins

Benfluorex Sigma B7522-5G

Cyproheptadine Sigma 279072-5G

Nocodazole Sigma M1404-2MG

Perhexiline Sigma SML0120-10MG

Etilefrine Sigma E2451000

Verteporfin Sigma SML0534-5MG

Diperodon Sigma D8536-5G

Deposited Data

Non-tissue specific core signatures of human

coding gene mutations

This paper; Mendeley Data https://data.mendeley.com/datasets/

8wznn46d43; http://www.picb.ac.cn/hanlab/

csD2G

csD2G predictions of drug repositioning

candidates

This paper; Mendeley Data https://data.mendeley.com/datasets/

8wznn46d43; http://www.picb.ac.cn/hanlab/

csD2G

Experimental Models: Cell Lines

HEK293T SIBS Cellbank GNHu44

PC-3 SIBS Cellbank SCSP-532

Experimental Models: Organisms/Strains

N2 (C. elegans) Caenorhabditis Genetics Center N/A

daf-16 (C. elegans) Caenorhabditis Genetics Center Cat# CF1038; RRID:WB-STRAIN:CF1038

aak-2 (C. elegans) Caenorhabditis Genetics Center RA8205

sir-2.1 (C. elegans) Caenorhabditis Genetics Center Cat# VC199; RRID:WB-STRAIN:VC199

eat-2 (C. elegans) Caenorhabditis Genetics Center Cat# DA1116; RRID:WB-STRAIN:DA1116

Software and Algorithms

Non-tissue specific core signature processing and

signature generation code

This paper http://www.picb.ac.cn/hanlab/csD2G

Generation code of d2gNES This paper http://www.picb.ac.cn/hanlab/csD2G

Generation code of d2gCSI This paper http://www.picb.ac.cn/hanlab/csD2G
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jing-

Dong Jackie Han (jdhan@picb.ac.cn).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
C. eleganswild-type N2 strain and daf-16, aak-2, sir-2.1mutant strains were used in lifespan assay and eat-2mutant strain was used

in pharyngeal pumping assay. All animals are hermaphrodites. They are cultured in NematodeGrowthMedia agar plates in 20�C from
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eggs to young adult stages. When drug treatment starts, animals are cultured in S-medium in 384-well plates with floxuridine in 20�C.
E. coli OP50 is used to feed animals in both culture conditions. All mutants are backcrossed with at least two times.

Cell Lines
PC-3 and for HEK293T cells were used in western blotting experiments. PC-3 is a human prostate cancer cell line (male), cultured

using F-12 medium (GIBCO, #21700075). HEK293T is a human embryonic kidney cell (the sex is unknown; lack of Y chromosome

sequence suggesting the source was female), cultured using MEM medium (GIBCO, #41500034). Both cells are cultured in 37�C,
with 5% CO2 in O2.

METHOD DETAILS

Processing TCGA transcriptomes and generating CSs of signaling genes
Signaling genes included: 1) human signal transduction pathway gene sets downloaded from KEGG pathway (https://www.genome.

jp/kegg/pathway.html) and Reactome (https://www.reactome.org/) databases; 2) human transcription factors, enzymes, trans-

porters, receptors and ion channels downloaded from Animal Transcription Factor Database (http://www.bioguo.org/

AnimalTFDB/), the human DEPhOsphorylation Database (http://www.depod.bioss.uni-freiburg.de/) and IUPHAR/BPS database

(http://www.guidetopharmacology.org/).

Processed RNA-seq data of 7,216 cancer patients and 653 normal samples (), and all ‘‘Level 3’’ mutation annotation files of 22

cancer types were downloaded from TCGA (https://cancergenome.nih.gov/). Expression profiles of cancer patients and cancer-

type-matched normal samples were log2-transformed and quantile normalized together. Samples carrying silent mutations were

discarded.

In each cancer, DEGs of a gene somatic mutation were first detected between normal samples and cancer samples that carry a

specific mutation type (missense mutation, nonsense mutation, frameshift deletion or frameshift insertion, etc.) in the gene by the R

package ‘‘limma’’ (Benjamini-Hochberg (BH)-corrected-p < 0.05) and filtered by expression fold changes (log2fold-change R 2) as

the mutation-type signature of the gene in a cancer type.

Then overlapping genes of the gene’s mutation-type signatures in multiple cancers/tissues were fetched to eliminate tissue-of-

origin background, as the CS for the gene with a mutation type. We used the following criteria: if a type of mutation for a gene

occurred in only two tissues, we define the overlapping DEGs between the two tissues as a CS; if a mutation occurs in N tissue types

where N R 2, we define the overlapping DEGs in R N/2 tissue types as CSs (formula 1).

CSi =

(
DEG j

X
j

ð1�DEG˛Sij

�ÞRNi

2

)
(1)

whereCSi defines theCS of the ithmutation type;Sij defines the jth signature set of the ithmutation type, andNi defines the number of

cancers for the ith mutation type. Samples of kidney chromophobe cell carcinoma (KICH) and kidney renal clear cell carcinoma

(KIRC) both belonging to kidney tissues, of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) both belonging

to lung tissues as well as of uterine carcinosarcoma (UCS) and uterine corpus endometrial Carcinoma (UCEC) both belonging to uter-

ine tissues were designated as from the same tissue of origin.

To capture the full spectrum of downstream effects from a gene, the union of CSs for all mutation types was defined as the CS for

the gene (formula 2), where CS and i are as defined above.

CS=WiCSi (2)
CSfinal =CS� DEGBG (3)

DEGBG are tumor-background genes differentially expressed in more than 50% of cancer types and removed them from CSs

(formula 3).

We also discarded a CS if samples used to derive the CS contained > 1 overlapping somatically mutated gene, to ensure one CS

only represents a single gene’s effect. Expression fold changes of CS genes were calculated in each tissue first and then averaged in

all tissues included.

Generating DTSs, d2gNES and d2gCSI
Drug treatment microarray data were downloaded from CMap (https://portals.broadinstitute.org/cmap/) and processed from raw

data to get expression profiles by the R package ‘‘affy.’’ Samples of the same drugs in certain cell lines were compared with corre-

sponding blank controls to obtain DEGs by ‘‘RankProd’’ (p < 0.05) as DTSs.

To generate d2gNES, CSs were separated into up- and downregulated gene sets, and scanned by the ranked lists of gene expres-

sion changes of all DTSs simultaneously through GSEA, to retain significant overlapping DGIs (nominal-p < 0.05). Then random gene

sets were generated for each CS and the analysis was repeated 1,000 times for each DTS to obtain significant DGIs (FDR < 0.25).
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DGIs were classified into two overlap patterns to infer direction of drug action based on GSEANES of up- and downregulated CSs: 1)

same pattern, where NESs of DTSs against upregulated CSs were positive and against downregulated CSs were negative; 2) oppo-

site pattern, where NESs of CSs against upregulated DTSs were negative and against downregulated DTSs were positive. DGIs with

conflicting directionswere discarded. Themaximumof absolute NESs against up- and downregulated CSswere defined as the score

for an overlap. When a DTS only had significant overlap with either up- or downregulated CS gene but not both, the direction and

score for the overlap were determined by NES of the more significant one. A d2gNES was assigned as the overlap score with a

plus sign for a DGI with same pattern, while with a minus sign for opposite patterns.

CSI was transformed into 3 scores for selection tomeasure the specificity of DGIs: 1) d2gCSI for finding the specific target genes of

a drug; 2) gene-drug CSI (g2dCsi) for finding the specific drugs of a target gene; 3) mean value of d2gCSI and g2dCsi. The one that

best distinguished GSP and non-GSP DGIs was chosen. To generate these scores, PCCs were first calculated using expression fold

changes of CS signature genes and corresponding values in DTSs, and then performed using the indicated formulas.

Drug-gene interaction specificity filter
We clustered DGIs based on d2gNES and d2gCSI values by BIC-SKmeans algorithm respectively to modularize DGIs. For DCs with

sparse values, they were fetched and re-clustered. We only kept DC-GC pairs with > average d2gNES and d2gCSI across all GCs.

DGIs in d2gNES and d2gCSI DC-GC pairs are merged if they are the same or if the genes are in the same complexes as annotated

having ‘‘input,’’ ‘‘reaction,’’ ‘‘binding,’’ ‘‘catalyze’’ or ‘‘complex’’ relationships in Reactome. As d2gCSI R 0.8 enriched for the most

GSPs, we further required DGIs in the remaining DC-GC pairs to have d2gCSI R 0.8.

Evaluation of csD2G and CSs in drug-target prediction
GSP DGI sets were integrated from DrugBank (Wishart et al., 2006), DGIdb (Griffith et al., 2013), STITCH (Kuhn et al., 2014) and

BindingDB (Gilson et al., 2016). For STITCH, only DGIs that passed a high-confidence score threshold (combined score R 900)

were used. For BindingDB, only DGIs that passed the rule-based thresholds of bioactivity indices (IC50, Ki, Kd, EC50 or ED, etc.) ac-

cording to a previous publication (Mavridis and Mitchell, 2013) were used.

The input data of gene expression and drug responses for PPA were downloaded from NCI-60 (https://dtp.cancer.gov/

discovery_development/nci-60/) and used with the PPA’s R package ‘‘isa2’’ in two ways. PPA (method 1): run PPA using all

NCI-60 data and then fetch results containing shared drug and gene sets with csD2G’s input. PPA (method 2): direct run PPA using

NCI-60 data of the shared drug and gene sets with csD2G’s input. MANOVA results were downloaded from GDSC (https://www.

cancerrxgene.org/). P values of associations between drug responses and gene expression given byMANOVAwere used to evaluate

the strength of DGIs for MANOVA. As no drug action modes are predicted by PPA and MANOVA, only the targeting strength of

csD2G, represented by the absolute values of prediction scores, was compared to these methods. Although a drug had DTSs in

multiple cell lines, among significant connections predicted by csD2G, 94% DGIs occurred in only one cell line, or in multiple cell

lines, but with the same direction in prediction score. Thus, to make csD2G comparable to PPA and MANOVA sans cell line informa-

tion, we fetched the maximum of the absolute values of csD2G prediction scores of multiple cell lines for a DGI that occurred in

multiple cell lines. Performance comparison between methods was based on shared drugs that are GSP and shared genes between

the input of PPA and csD2G, or between MANOVA and csD2G. All drug-gene combination pairs of the shared drugs and genes were

considered and pairs that weremissed by amethodwere given a value of 0. Tomake normalized prediction power for different drugs,

each drug’s DGI prediction were first rank transformed, then the relative ranks of all drugs’ DGIs were merged for ROC analysis for

each method. Here, sensitivity is defined as the ratio of GSP DGIs’ occurrence number versus that of all DGIs at various thresholds

according to the rank-transformed prediction scores. As there is no available true negative DGI set, specificity is defined as the ratio

of non-GSP DGIs’ occurrence number versus that of all DGIs. The DeLong test was used to judge the significance of difference be-

tween prediction AUCs. For comparison with L1000, we queried 255 drugs prediction scores, a random selection from 606 shared

drugs between L1000 and csD2G, in gene knockdown and overexpression perturbation sets.

We also compared CSs to conventional signatures fromGEO, ENCODEChIP-seq and regulator-regulon interaction networks. 860

microarray datasets of single gene perturbation were downloaded fromGEO and processed from raw data to get expression profiles

with the R package ‘‘affy.’’ Samples of treatment and control groups were classified manually to detect DEGs by the R package

‘‘RankProd’’ (p < 0.05), as GEO single gene perturbation signatures. Outlier samples that were not clustered within the assigned

groups were discarded. GEO signatures were separated into up- and downregulated gene sets to scan the ranked lists of gene

expression changes of DTSs by GSEA to obtain GEO-signature-generated d2gNES (nominal-p < 0.05 and FDR < 0.25). Human

TF ChIP-seq peaks were downloaded from ENCODE (https://www.encodeproject.org/comparative/regulation/) and assigned to

nearest genes by Homer (http://homer.ucsd.edu/homer/) to get TF-target sets. Target sets of TFs were used to scan the ranked lists

of gene expression changes of DTSs by GSEA to calculate ENCODE-generated d2gNES (nominal-p < 0.05 and FDR < 0.25). Protein

activity changes under drug treatments inferred by VIPER were fetched from its original publication(Alvarez et al., 2016). The activity

changing scores were used to evaluate the influence of drugs on genes of corresponding DGIs. For each drug, relative ranks of GSP

targets were calculated for comparison between CSs and other signatures.
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Directional comparison of CSs and conventional signatures
For comparison of CSs and conventional GEO signatures in expression change directions, CSs were separated into up- and down-

regulated to scan the ranked list of gene expression changes of GEO signatures by GSEA to obtain CS-GEO signature pairs (C-G

pairs) that significantly shared overlapping signature genes (nominal-p < 0.05 and FDR < 0.25). Direction of C-G pairs was defined

as consistent when for mutation and RNAi treatments: NES > 0 for up versus upregulated genes and NES < 0 for down versus down-

regulated genes, and opposite for OE treatment. Precision and sensitivity for CS capturing expression change directions of conven-

tional signatures were calculated as below.

Precision=

P
True positiveP

Predictive condition positive
Sensitivity =

P
True positiveP

Condition positive

where predictiv condition positive are C-G pairs with consistent directions, ture positive are C-G pairs of the same genes and with

consistent directions, and condition positive are all C-S pairs of the same genes being tested. Randomly-matched C-S pairs were

used as random background.

Data analysis
The BIC-SKmeans clustering method was used to automatically determine optimal cluster numbers and then perform clustering

analysis, as described previously(Zhang et al., 2013). Heatmaps were visualized by Java Treeview (http://jtreeview.sourceforge.

net/) and the R package ‘‘pheatmap.’’ Enrichment analyses of gene function and drug category were performed by hypergeometric

tests for clusters of genes and drugs respectively. Gene sets of KEGG pathway andGeneOntology (http://geneontology.org/) as well

as drug category sets of DrugBank, ChEBI (https://www.ebi.ac.uk/chebi/) and USP drug classification system (http://www.usp.org/)

were used for enrichment analyses. The Tanimoto coefficient between drugs was calculated with the Python module ‘‘Indigo’’ for

chemical similarity analysis. Drug chemical structure strings of Simplified Molecular Input Line Entry System (SMILES) were down-

loaded from DrugBank. ROC curves were generated and smoothed by R package ‘‘pROC.’’ Student’s t test, binomial test, hyper-

geometric test, Fisher’s exact test, log-rank test and the DeLong test were performed in R for statistical analysis.

Worm lifespan assay
Lifespans were carried out in liquid medium (S-complete medium) at 20�C in 384-well plates containing 6-15 C. elegans worms (N2,

daf-16, aak-2 or sir-2.1 strain) in 150 ml, 10mgml-1 freshly preparedE. coliOP50 and 0.1mgml-1 5-fluoro-20-deoxyuridine (floxuridine)
per well. Age-synchronized nematodes were seeded as L1 larvae in solid plates containing floxuridine and transferred to 384-well

plates at adult day 0. Drug treatments started from adult day 1. Benfluorex, cyproheptadine, nocodazole, perhexiline, etilefrine, ver-

teporfin and diperodon (Sigma) were dissolved in dimethyl sulfoxide (DMSO) at 5003 or water at 503 final concentrations as stocks

before use. DMSOorwater with the same volumes of drugswas used as blank controls. Freshly prepared E. coliOP50 and drugswith

working concentrations were added in 384-well plates every other day. The fraction of animals alive was based onmovement in video

recordings. Video capture was performed by microscope (Nikon) automatically every other day for each well. Plates were shaken by

rotator for 3 min and exposed to bright light for 3 min before video capture. For the drugs’ dosages, since most of them have

never been tested on lifespan before, we checked their cell line experiment concentrations and tested using those concentrations

first (Figure S5A). Then since all the reported concentrations are around 10�50mM and showed some lifespan effects, we expanded

the concentration gradients to 10, 100 and 1000mM to perform lifespan assays further. Each lifespan assay of a drug was arranged

with 10 or 20 wells per experiment.

Pharyngeal pumping
Wormswere grown in liquidmedium (384-well plates) at 20�C from adult day 0 and treated with drugs or blank controls from adult day

1. Pumping rate was tested after 3-day treatment on adult days 4 and 5. Worms were transferred to bacteria-containing agar plates

for 30 min and then the grinder movement within 10 s was counted. The eat-2 strain was used as a control.

Western blotting
Cellular lysates were prepared by suspending 13 106 cells in 100 mL of 23 SDS loading buffer for PC-3 cells and 40 mL for HEK293T

cells after 12 hr serum-free starvation followed by drug treatment in indicated concentrations. Then cells were disrupted by sonicat-

ion and extracted at 4�C for 20 min. Antibodies for AKT (pan) (#4691), phospho-AKT (Ser473) (#4060), AMPKa (#2532), phospho-

AMPKa (Thr172) (#2535) and GAPDH (#5174) were purchased from Cell Signaling Technology. AKT western blotting was performed

in PC-3 cells and insulin were added to medium for 10 min before cell extraction. AMPK western blotting was performed in HEK293T

cells. ImageJ software was used for quantification.
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Electronic medical records
Electronic medical records of Han Chinese patients were collected from RecData Technology Co, Ltd. To focus on the relationship

between blood lipids and antihypertensive drugs, we selected hypertensive patients without medical history of hyperglycemia and

hyperlipidemia and never administrated hypoglycemic or hypolipidemic drugs. All recorded blood indices were exacted from the

records.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis
Statistical analyses were performed by R version 3.4.1. One-tailed Student’s t test was performed for Figure 2E, Figure 3B and 3C,

Figure S1C, Figure S2B, Figure S3F and Figure S7B and S7C; one-tailed binomial test was performed for Figure 1D; hypergeometric

test was performed for Figure 2C; one-tailed DeLong test was performed for Figure 3A; log-rank test was performed for Figure 5A and

5B, Figure S5A-D and Figure S6. All significance p values were indicated in panels where performed. P value 0.05 was the signifi-

cance cutoff. Number, age and gender of patients of electronic medical records were indicated in Figure 2E and Figure S3F. Number

of C. elegans used for life assays was indicated in Figure 5A and 5B, Figure S5A-D and Figure S6.

DATA AND SOFTWARE AVAILABILITY

Non-tissue specific core signatures of human coding genemutations and csD2G predictions of drug repositioning candidates can be

found at https://data.mendeley.com/datasets/8wznn46d43 and http://www.picb.ac.cn/hanlab/csD2G.

Codes of generating core signatures, d2gNES and d2gCSI can be found at http://www.picb.ac.cn/hanlab/csD2G.
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