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Ageing is a major risk factor for many complex human dis-
eases. Rates of biological ageing are highly variable among 
individuals of the same chronological age. To quantify age-

ing, ideally, biological age rather than chronological age should be 
assessed; however, because of the lack of a gold standard for biologi-
cal age, the population average of chronological age is often assumed 
to be the standard of biological age. The deviators or outliers of the 
average or standard curve are defined and often substantiated as fast 
or slow agers by other physiological or molecular parameters. On 
the basis of this assumption, many methods have been developed 
to quantify ageing. For example, predicting age using the transcrip-
tome in human peripheral blood has a mean absolute difference 
(MAD) between chronological age and predicted biological age of 
7.8 yr (ref. 1), using the proteome has a Pearson correlation coeffi-
cient (PCC) of 0.93–0.97 (ref. 2) and using the DNA methylome has 
a MAD of 4.9 yr in whole blood from 656 human cohorts3 and 3.6 yr  

in heterogeneous tissues4. However, because the transcriptome, 
DNA methylome and proteome have to be measured in blood cells 
or other tissues, invasiveness and high costs preclude their applica-
tion to large-scale screens and routine physical examinations.

Facial images have been used in traditional Chinese medicine as 
a major diagnosis tool for evaluating health and disease status. This 
practice originated more than 2,000 years ago5, and is increasingly 
being used by Western-medicine clinicians to diagnose developmen-
tal syndromes6. Our previous work has established 3D human facial 
image as an ageing marker, generated a partial least squares regres-
sion (PLSR) model and used the difference between chronological 
and predicted age (AgeDiff) to identify outliers in the ageing rate7.

Many biological pathways are known to be associated with age-
ing or age8, but no biological process has been directly linked to 
differential ageing rates (or AgeDiff) across individuals. Indeed, 
the ageing rate might be associated with a subset of ageing-related 
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changes that are more modifiable by environment, diet, lifestyle or 
variations in genetic background across different individuals than 
the genetically hardcoded programme that is fatefully played out 
for a species. Thus, an understanding of the molecular events con-
tributing to AgeDiff is actionable and pertinent to understanding 
healthy ageing.

Recently, deep CNNs have been successfully used in the classi-
fication of Alzheimer’s disease9 and skin cancer10. Benefiting from 
these highly efficient CNN architectures, we trained three classic 
CNNs (Inception, Visual Geometry Group (VGG) and ResNet) 
using the large datasets in ImageNet. We then applied them to 3D 
facial images from a large cohort of 4,719 individuals so they could 
learn age by transfer learning. In combining the results from the 3 
CNNs, the accuracy of age and perceived-age prediction reached a 
MAD of 2.79 and 2.90 yr, respectively. This allowed us to examine 
ageing-rate heterogeneity across individuals during ageing, which 
was otherwise missed by our previous linear PLSR model. Our CNN 
for perceived-age prediction is designed to learn a representation of 
biological age instead of chronological age, which is supported by 
its detection of much-stronger associations of lifestyle and health 
parameters with ageing than those found by a chronological-age 
predictor. We used a statistical test11, coupled with peripheral blood 
mononuclear cell (PBMC) transcriptome analysis, and built a 
causal-inference network that reveals circulation factors mediating 
lifestyle impacts on facial morphologies from blood transcriptomes. 
We deposited and visualized the associations and inferred causal 
relationships in the HuB-Fi (http://www.picb.ac.cn/hanlab/hub-fi/) 
database for researchers and the public to explore.

Results
Deep CNN predicts accurate age and perceived age. To construct 
a highly accurate age-estimating model from 3D facial images, 
we collected 4,719 facial images from Han Chinese individuals 
in North China (Jidong) with the 3dMDface System, together 
with corresponding age, sex, physical-examination and question-
naire information (Supplementary Table 1 in the Supplementary 
Information). We developed a fully automated pipeline for analysis 
of 3D facial images, including pose correction, landmark identi-
fication and projection of depth and red, green and blue (RGB) 
colour of a 3D image onto two-dimensional (2D) images with 
four channels, for face registration and deep learning. We then 
used these 2D images to train the CNN model to predict chron-
ological age (FaceCnnAge) (Fig. 1a, Extended Data Fig. 1a and 
Methods). The predictor achieved a MAD of 2.79 yr by 10-fold 
cross-validation (Methods and Fig. 1b, left), compared with 4.47 yr 
using a PLS model (FacePlsAge) (Fig. 1b and Extended Data Fig. 
1b). Because a CNN trained on chronological age by optimizing  

prediction accuracy for chronological age might not be optimized 
to detect biological age, we trained another CNN model to predict 
perceived age, which might better reflect the health state12, termed 
FaceCnnPerceivedAge. This model also achieved a high accuracy, 
with a MAD of 2.90 yr for perceived age and 4.10 yr for chronologi-
cal age (Fig. 1b). We then examined the consistency of AgeDiffs or 
outliers (|AgeDiff| > MAD) given by different models and found 
that they are highly correlated (Supplementary Table 2) or sig-
nificantly overlapped (P < 0.05), especially between the two CNN 
models (Extended Data Fig. 1b).

To validate the CNN models in independent cohorts, we pre-
dicted the ages of people in 332 images from the 2012 Beijing cohort 
(Supplementary Table 3; these images have only half the resolution 
of those in the other cohorts) and in 358 images from the 2015 
Beijing cohort (Supplementary Table 4) with the CNN models that 
learnt from the large Jidong cohort. We achieved a MAD of 3.85 yr 
for data collected in 2012 and of 3.92 yr for data collected in 2015 
for FaceCnnAge, and a MAD of 6.66 yr for 2012 and of 4.12 yr for 
2015 for FaceCnnPerceivedAge (Extended Data Fig. 1c). As a com-
parison, the PLS model achieved MAD = 6.15 and 4.81 yr for the 
2012 and 2015 Beijing cohorts, respectively. These results suggest 
that the CNN models achieve superior accuracy not only over all 
other linear models by cross-validation in the same cohort but also 
in at least two other independent cohorts. It should be noted that, 
due to the small sample sizes of the Beijing cohorts, we could not do 
the opposite, that is train the CNN models on the Beijing cohorts 
and validate them on the Jidong cohort.

Health and lifestyle parameters associated with AgeDiffs. To 
examine the biological relevance of AgeDiffs, we next examined 
the association of AgeDiffs with health parameters corrected for 
age (false-discovery rate (FDR) < 0.1) in the Jidong cohort. Indices 
related to obesity, blood pressure, transglutaminase, alkaline phos-
phatase and cholesterol were among the factors that were most 
strongly associated with all AgeDiffs, whereas bone mineral den-
sity and creatinine were significantly negatively associated with 
three out of four AgeDiffs. Interestingly, among all four AgeDiffs, 
FaceCnnPerceivedAgeDiff associated with remarkably more health 
parameters than other AgeDiffs did (Fig. 1c), indicating that it 
could be a superior predictor of health, even when compared with 
the model’s training data—human-perceived age.

To uncover the associations of lifestyles factors with differen-
tial ageing rates, we determined the association between quan-
titative lifestyle parameters with AgeDiffs in the Jidong cohort. 
Smoking, number of cigarettes and years of passive smoking 
were linked to all four AgeDiffs as the factors that most strongly 
increased the ageing rate. Frequency of snoring, sound of snoring 

Fig. 1 | Accuracy of age predictors, and the health parameters and lifestyles associated with AgeDiffs. a, The large amount of imaging data we collected 
and the fully automated pipeline for analysis of 3D facial images (landmark identification and face registration) we developed here enabled us to train 
CNNs to predict chronological and perceived age in a cohort of 4,719 individuals (Jidong) by cross-validation and by validation in two independent cohorts 
of ~300 individuals each (Beijing 2012 and Beijing 2015). The ImageNet pretrained weights of Inception (Inception_v1), VGG (VGG_16) and ResNet 
(ResNet_50) were transferred to learn age or perceived age. Average faces of the cohort are used for illustration. Ageing rate, as defined by predicted 
versus chronological age (AgeDiff), was examined for associations with health and lifestyle in the Jidong cohort. Ribo-minus RNA-seq of blood PBMCs 
was generated for the Beijing 2012 cohort, and was used to infer the molecular mediators of lifestyle impact on ageing-rate variations. b, Correlation 
of predicted age from four approaches with chronological age. c, Association-strength network of 4 AgeDiffs and health parameters, corrected for 
chronological age, filtered by FDR < 0.1. BMD, bone mineral density; DBP, diastolic blood pressure; SBP, systolic blood pressure; BMI, body mass index; 
NECCIR, neck circumference; ABDCIR, abdominal circumference; WSTCIR, waist circumference; HIPCIR, hip circumference; CR, creatinine; AKP, alkaline 
phosphatase; ALT, alanine aminotransfersase; AST, aspartate transaminase; TC, total cholesterol; APOA, apolipoprotein A; APOB, apolipoprotein B; GT, 
transglutaminase; FBG, fasting blood glucose; LDL, low-density lipoprotein; TG, triglycerides. d, Association network between lifestyle and AgeDiffs 
in the Jidong cohort. Edges are filtered by FDR < 0.1. Smoking, smoker or non-smoker; CigNumber, average number of cigarettes per day; CigPasYear, 
number of years of passive smoking; SnoreFreq, frequency of snoring per week; SnoreSound, whether the sound of a snore is louder than speaking voice; 
SnoreApnoea: whether snoring is coupled with apnoea; Alchohol, average intake of alcohol per day; Salt, average intake of salt per day; DyeHair, whether 
have hair dyed in the last three months; Fruit, frequency of consuming fruits; Vegetable, frequency of consuming vegetables; Dair, frequency of consuming 
dairy products; ExHighMin, average length of vigorous exercise per day.
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and apnoea during snoring were linked to all but FacePlsAgeDiff. 
Among factors that decreased the ageing rate, dairy intake 
was linked to all four AgeDiffs. The associations identified by 
FaceCnnPerceivedAgeDiff essentially captured all those found 
by FaceCnnAgeDiff or by FacePerceivedAgeDiff, but captured 
a greater number of associations (Fig. 1d). This suggests that 
both are optimized to accurately detect the ageing rate, with 
FaceCnnPerceivedAgeDiff being a better estimate of the biological 
ageing rate than all other age predictors are, including perceived 
age itself. Similar associations can be observed in the smaller 
Beijing 2012 cohort (Extended Data Fig. 2).

AgeDiff heterogeneity peaks at middle age. In contrast to the s.d. 
expected from randomly guessing a number between 20–85, which 
is highest at young and old age (Extended Data Fig. 3a), the het-
erogeneity of the ageing rate precisely captured by FaceCnnAgeDiff 
and FaceCnnPerceivedAgeDiff peaked at middle age (Fig. 2a). 
FacePerceivedAgeDiff also peaked at middle age, although it pla-
teaued afterwards in males. FacePlsAgeDiff, however, is very dif-
ferent in that it shows a monotonic increase in s.d. with increasing 
chronological age and an s.d. that appears random at old age. These 
patterns are insensitive to the bin size (moving window) (Methods 
and Extended Data Fig. 3b). Similar patterns can be observed in the 
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smaller Beijing cohort. Using broken-stick regression to pinpoint 
the breakpoint in the regression line, we found that all four AgeDiffs 
predominately show a breakpoint peaking at middle age (Extended 
Data Fig. 4a,b).

Previous findings show that for human brain ageing tran-
scriptomes, unlike those of very young or very old individuals, 
middle-aged individuals display high heterogeneity13. We observed 
a similar pattern when all samples were visualized by a heatmap 

of age-related quantitative facial features (Fig. 2b) and age-related 
health parameters (Fig. 2c) in the Jidong cohort and also in the 
Beijing 2012 cohort (Extended Data Fig. 3c).

Transcriptomic age is consistent with facial age. Using the cohort 
that we collected from the Beijing area (Beijing 2012), we extracted 
and sequenced the ribo-minus RNA from PBMCs of 280 individu-
als with matching 3D facial images (Supplementary Table 5). We 
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performed PLSR analysis on transcriptomes to predict chronologi-
cal age in the same way that we did for 3D facial images7. The MAD 
of the predicted age (RnaPlsAge) by all transcribed genes and the 
chronological age was 5.68 yr (Extended Data Fig. 5a–d). Like the 
s.d. of AgeDiff detected by CNN in both the large and the small 
cohort, RnaPlsAgeDiff in this small cohort peaked at middle age 
(around 40–50 yr old) (Extended Data Fig. 3d,e). Similarly, with 
broken-stick regression, we found that all four AgeDiffs predomi-
nately showed a breakpoint peaking at middle age in the Beijing 
2012 cohort (Extended Data Fig. 4c,d).

We also applied the FaceCnnAge and FaceCnnPerceivedAge 
CNN models that learnt from the large Jidong cohort to 
the 280 samples and compared them with PLSR-derived  
models FacePlsAge (trained on the 280 3D facial images) and 
RnaPlsAge. Despite being derived from different machine-learning 
algorithms, different training sets and different data types, the 
AgeDiffs predicted by various models significantly correlated 
with each other, with higher correlation of RNA with CNN-based 
models than with the facial PLS model (Supplementary Table 6), 
especially among outliers (Supplementary Table 7). Moreover, 
the outliers identified by RnaPlsAge significantly overlapped  
with the two CNN-based models in both fast and slow agers  
(P < 0.05, Extended Data Fig. 5e). This confirms that the outliers 
detected by analysis of the transcriptomes of PBMCs are reflected 
in 3D facial features.

Inflammation is related to AgeDiff at the transcriptome level. 
To identify the blood transcriptome differences associated with dif-
ferential facial-ageing rates, we compared the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways with gene expression 
that was correlated with at least two of the four estimated AgeDiffs 
or with age (Fig. 3a). Among pathways positively correlated with 
AgeDiffs (FDR < 0.1), most were also positively correlated with 
age and inflammation, such as those linked to Escherichia coli, sal-
monella infection and shigellosis. And, similarly to age, AgeDiffs 
tended to be consistently negatively correlated with biogenesis 
of ribosome and transfer RNA. Although all four AgeDiffs were 
uncorrelated with chronological age after age correction, the molec-
ular pathways that correlated with age and the four AgeDiffs were 
largely consistent, indicating that the acceleration or deceleration of 
ageing detected by AgeDiffs measurements is largely consistent with 
the ageing process at the pathway level.

We then sought to further verify the AgeDiff–inflammation 
association by examining whether inflammatory gene sets are 
positively related to AgeDiffs. Cytokine expression was positively 
related to FacePlsAgeDiff, RnaPlsAgeDiff and FaceCnnAgeDiff 
(Kolmogorov–Smirnov (KS) test, nominal P < 0.05), but not 
FaceCnnPerceivedAgeDiff. Innate-immunity-related genes, such 
as those linked to antigen processing and presentation, were posi-
tively related to all four AgeDiffs (KS test, Extended Data Fig. 6a). 
In summary, all four AgeDiffs were significantly positively related 
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to inflammation and innate-immunity processes, which are also 
important features of ageing per se.

Inflammation is related to AgeDiff at the cell-type level. We also 
considered whether cell fractions are differentially associated with 
AgeDiffs. Using CIBERSORT14, we found that the monocyte fraction 
was significantly positively associated with FacePlsAgeDiff, and the 
direction was consistent, although not significant, with its associa-
tion with the other three AgeDiffs across all individuals (Extended 
Data Fig. 6b). Consistently, monocyte count was even more signifi-
cantly associated with FacePlsAgeDiff (t-test, P = 0.00056 between 
the top and bottom 20% of samples, Fig. 3b). The PLSR components 
1 and 2 of 3D facial images regressed to monocyte fractions most 
significantly mapped to shrinkage of the forehead (Fig. 3b), which 
is in agreement with the negative association between inflammatory 
biomarkers, including interleukin-6, osteoprotegerin and tumour 
necrosis factor-α, and brain volume as measured by magnetic reso-
nance imaging15.

In contrast, naive CD4+ T cells were consistently negatively asso-
ciated with all four AgeDiffs, although the association was signifi-
cant for only FacePlsAgeDiff and for RnaPlsAgeDiff (Fig. 3c and 
Extended Data Fig. 6b). The PLSR components 1 and 2 of 3D facial 
changes to this cell fraction showed mapping to a reduction of 
under-eye puffiness (Fig. 3c, z axis).

In addition, both CNN-derived AgeDiffs were significantly asso-
ciated with the mean corpuscular volume of erythrocytes (MCV), 
a known chronic-illness indicator that is positively associated with 
ageing16, nutrition17 and alcohol abuse18, between more-extreme 
samples (compared between the top and bottom 10% of samples; 
the association was marginal if the comparison was between the top 
and bottom 20% of samples). The facial pattern was similar to that 
associated with the monocyte fraction (Fig. 3d).

The impacts of lifestyle on AgeDiff and the mediating transcrip-
tome regulators. Our parallel measurement of lifestyles, blood cell 
transcriptome and AgeDiffs for the same individuals in the Beijing 
2012 cohort offered an opportunity to examine the molecular 
mediators of the impact of lifestyle on facial AgeDiff. We thus gen-
erated a tripartite network of lifestyle–transcriptome–AgeDiff using 
a causal-inference framework11,19 querying all transcriptome clus-
ters, ENCODE transcription factors, signalling and epigenetic fac-
tors and cytokines as potential mediators (P < 0.05 and FDR < 0.1, 
Methods). Cytokines semaphorin 6B (encoded by SEMA6B) and 
granulin (encoded by GRN) were inferred to be the mediators by 
which smoking increases FaceCnnAgeDiff and FacePlsAgeDiff, 
respectively; SEMA6B was also inferred to be a mediator by which 
alcohol drinking (measured in ‘Drunkenness days per week’) 
increased FaceCnnAgeDiff. ZZ-type zinc-finger-containing 
protein 3 (encoded by ZZZ3), involved in chromatin organiza-
tion, was inferred to be the mediator of yoghurt’s negative effect 
on FaceCnnAgeDiff, and to lower SMAD1 to negatively affect 
FaceCnnPerceivedAgeDiff. RnaPlsAgeDiff had its own separate 
subnetwork, in which consumption of stem and root crops (for 
example, potato) were positively related to RnaPlsAgeDiff, medi-
ated by tumour protein p53 (encoded by TP53) (Fig. 4a, P < 0.05 and 
FDR < 0.1). Interestingly, semaphorin is a chemokine, while granulin 
(cleaved from GRN, the granulin precursor) is also a secreted factor 
playing important roles in the development of the central nervous 
system20, wound healing21, tumorigenesis22 and neurodegenerative 
disease23. Overall, the network can be partitioned into four mod-
ules on the basis of connectivity density: the first, mostly affecting 
FacePlsAgeDiff and partially affecting FaceCnnAgeDiff, is enriched 
for proteolysis; the second, mostly affecting FaceCnnAgeDiff, is 
enriched for glycoprotein, protease and lysosome; the third, mostly 
affecting FaceCnnAgeDiff, is enriched for transmembrane proteins 
and zinc-finger transcription factors; and the fourth, exclusively 

affecting RnaPlsAgeDiff, is enriched for response to antibiotics and 
ultraviolet radiation (Fig. 4a).

Ribo-minus RNA sequencing (RNA-seq) allowed us to simul-
taneously examine coding and non-coding RNA changes during 
human ageing. We found 935 long non-coding RNAs (lncRNAs) 
that were commonly expressed (fragments per kilobase of tran-
script per million reads mapped (FPKM) > 2) in at least a quarter of 
samples. Among them, 62 and 210 were up- and downregulated by 
age, respectively (FDR < 0.1) (Extended Data Fig. 7a). Twenty-three 
lncRNAs appeared in the causal-inference network (Fig. 4a). We 
found 5,002 circular RNAs (circRNAs) commonly expressed (tran-
scripts per million (TPM) > 2) in at least a quarter of samples. 
Among them, 41 and 8 were up- and downregulated with age, 
respectively (FDR < 0.1) (Extended Data Fig. 7b,c), and 45 of them 
appeared in the causal-inference network (Fig. 4a). Despite a trend 
of a higher fraction of total circRNAs during ageing (Extended Data 
Fig. 7d, PCC = 0.26), consistent with global circRNA accumulation 
with age24, total circRNA level shows no significant association with 
AgeDiffs, implicating it to more likely be a consequence of ageing.

We applied the same causal-inference approach to only the out-
liers defined by all four AgeDiffs because we assumed that some 
associations might be significant only in more-extreme samples. 
Indeed, we found a very different set of associations among the out-
liers as compared with those of the whole cohort. Ice-cream intake 
was inferred to be positively related to FacePlsAgeDiff through two 
circRNAs and to FaceCnnAgeDiff through AE binding protein 1 
(encoded by AEBP1), chromobox 5 (encoded by CBX5) and ste-
rol regulatory element-binding transcription factor 1 (encoded by 
SREBF1). Yoghurt was negatively related to FaceCnnAgeDiff and 
FaceCnnPerceivedAgeDiff through a few lncRNAs and circRNAs 
among the outliers (P < 0.05 and FDR < 0.1, Fig. 4b). SREBF1 mod-
ulates cellular cholesterol metabolism, regulates lipogenesis and gly-
colysis25 and has an important role in the immune system26,27.

To facilitate the full utilization of this dataset, we developed the 
HuB-Fi database for querying and visualizing health status and 
transcript changes associated with facial-ageing features, and the 
impacts of different lifestyles.

Discussion
In this study, we developed deep-learning CNN models that made 
age predictions based on high-resolution 3D facial images with high 
accuracy in a large cohort of ~5,000 people. CNN models identified 
a larger number of associations, that were stronger in significance, 
of ageing with health parameters and lifestyles, demonstrating that 
these models are a high-accuracy method for estimation of the age-
ing rate that can be complementary to other methods. Despite there 
being relatively fewer samples of very old ages (>70 yr) included 
for age prediction in our work, we consistently found many life-
style and health parameters associated with various AgeDiffs, in 
particular the AgeDiff given by the artificial intelligence (AI)-based 
perceived-age predictor (FaceCnnPerceivedAgeDiff). The observa-
tion that the AI model often outperforms the PLS model is probably 
because the AI predictor is less sensitive to imbalanced data struc-
tures. In fact, FaceCnnPerceivedAgeDiff not only is associated with 
many more health parameters but also is more highly significantly 
associated with blood pressure than are the other three AgeDiffs 
(Supplementary Table 8). This suggests that our age predictors, 
in particular the AI-based predictor of perceived age, are supe-
rior health estimators. Unlike using chronological age in machine 
learning, the unique advantage of using perceived age as a health 
biomarker has been illustrated before by the Christensen group 
in Danish twins12. Here, we trained an AI predictor to learn how 
humans perceive other people’s ages, which reliably captured human 
perception and even corrected some human errors through regular-
ization, hence generating a health predictor that is even more accu-
rate than perceived age (the training standards). Although CNNs 
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could give a much more accurate prediction of chronological age 
by optimizing chronological-age prediction, such prediction might 
ignore the deviations of biological age from chronological age. This 
is partially circumvented by training the CNN to learn perceived 
age, even though perceived age may not be a true reflection of bio-
logical age. The PerceivedAge s.d. generally increased with chrono-
logical age (PCC = 0.248, P < 2.2 × 10–16). This is perhaps because 
the judges of age were all young people who are not accustomed 
to judging older people’s ages from experience, and even by ran-
dom guessing, a larger number (representing age in this case) will 
have a larger range of variance than a smaller number will. However, 
although the PLS model does not predict chronological age as accu-
rately as the CNN does, its simplicity may capture certain aspects of 

biological age that are ignored by the CNN. Future studies of a panel 
of gold standards of biological age will allow CNNs to be trained 
to specifically estimate biological age, and a better judgement to be 
made of the utility of different models for predicting biological age.

As for the specific pipeline and parameters we chose in this study, 
we first tested the most widely used CNN architectures, GoogleNet, 
VGG with 16 layers and ResNet with 50 layers. We found very simi-
lar performance between ResNet with 101, 152 and 200 layers and 
ResNet with 50 layers. Therefore, in the final model, we included in 
the ensemble the results of only ResNet with 50 layers. Using just 
RGB images, the deep CNN models could predict age with high 
accuracy, with a MAD of 2.90 yr when using GoogleNet, a MAD of 
3.27 yr when using VGG and a MAD of 3.13 yr when using ResNet. 
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Fig. 4 | Inferred molecular mediators of AgeDiffs. a,b, Network of inferred causal relationships (causal-inference test with FDR correction, Methods) 
from lifestyle factors to AgeDiffs via molecular mediators (transcription factors, cytokines, regulatory genes and commonly expressed non-coding RNAs) 
among all samples (a) or outlier samples (b) in the Beijing 2012 cohort. Opaque nodes and edges indicate non-coding RNA mediators.
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Similarly, we also predicted age with only depth information, which 
produced a MAD of 3.50 yr when using GoogleNet, a MAD of 3.75 
yr when using VGG and a MAD of 3.70 yr when using ResNet. An 
ensemble of the three CNNs reaches a MAD of 2.82 yr for RGB 
images and a MAD of 3.35 yr for depth images. The final ensemble 
of the RGB and depth images yielded our reported MAD of 2.79 yr.

We further collected parallel data from 280 Han Chinese indi-
viduals in Beijing. We applied the CNN models trained on the 
large cohort to this smaller cohort and compared them with lin-
ear facial-image and transcriptome-age prediction models derived 
from the small cohort. Outliers identified by all four AgeDiffs sig-
nificantly overlapped (P < 0.05).

At the functional level, high AgeDiffs all converged on the upreg-
ulation of inflammation and innate-immunity function, which is 
also supported by the upregulation of monocyte counts, a major 
player in innate immunity, and MCV, an indicator of chronic ill-
ness. Our analysis highlights the functional similarity between 
RNA-derived and 3D-facial-image-derived AgeDiffs not only at the 
molecular and functional level, but also at the cellular level.

The age-related facial features, health parameters and gene 
expression, as well as various AgeDiffs (except FacePlsAgeDiff) all 
revealed a large heterogeneity of the ageing rate at middle age, with 
a bimodal distribution of the old and young patterns. This suggests 
that young and old are the alternative steady states, and middle age 
is a transition stage (Fig. 2 and Extended Data Fig. 3), implying that 
middle age is the ideal stage for ageing interventions. Incidentally, 
it also avoids the complications of growth/maturation in the young 
group and the impact of disease status in the older group, and sup-
ports ageing-related risk screening for middle-aged people, a tar-
get group in which the benefits of implementation of therapies are 
likely to outweigh the potential harms of screening28.

Finally, by scrutinizing the lifestyle choices responsible for accel-
eration or deceleration of AgeDiff and their potential molecular 
mediators in the blood, we found many potential causal associations 
between lifestyle, transcript and AgeDiff.

Overall, our analyses based on various age predictors show that 
humans age at different rates both in the blood and on the face, 
but coherently and with heterogeneity peaking at middle age. The 
differences can be attributed to different lifestyles, which through 
impacting circulating factors may affect facial morphology. 
More-accurate CNN-based predictors enabled more-sensitive and 
statistically robust discoveries of associations between facial fea-
tures, health and lifestyle.

Despite some obvious limitations in our current study that need 
to be addressed in future studies, such as that individuals of advanced 
age were not included, that only Han Chinese people were included 
and that the current model is based only on a high-resolution 3D 
imaging system, our study represents a step closer to the ultimate 
goal of identifying actionable lifestyle choices and their molecular 
mediators to target ageing. The AI technology we developed here 
aims to easily and widely monitor ageing rates, which will greatly 
benefit the ever-growing ageing populations and development of 
effective intervention strategies. However, as this system is based 
on facial images, the technology is not only sensitive in regard to 
personal identification but potentially can be abused for unintended 
purposes; hence, it should be carefully guarded against any unethi-
cal use. With an increased sample size, we expect that other lifestyle 
parameters, their molecular mediators and facial signatures will be 
discovered by the same type of study in the near future.

Methods
Ethics statement. The Jidong study was carried out according to the guidelines of 
the Declaration of Helsinki29. Approval was obtained from Ethical Committees of 
the Staff Hospital of Jidong oil-field of China National Petroleum Corporation. The 
approval will be renewed every 5 years. Written informed consent was obtained 
from each of the participants. The Beijing study was approved by the ethics 
committee of the Shanghai Institutes for Biological Sciences, Chinese Academy 

of Sciences. For the detailed recruitment procedure, please refer to the Reporting 
Summary.

Data acquisition. We collected 3D facial images of the Han Chinese cohort at 
Tangshan in Heibei province using the 3dMDface System (www.3dmd.com). As a 
requirement, volunteers sat straight and looked forward to the 3dMDface device 
for 1 min, without any facial expression, for the 3D facial images to be taken. The 
3dMDface system returned OBJ-formatted 3D facial surfaces with point clouds 
and corresponding texture images. Also for each participant, baseline information 
including age, sex, education level, anthropometry and lifestyle factors (for 
example, frequency of smoking, alcohol drinking, diet and exercise) were collected 
from questionnaires, weight, height and blood pressure were measured and routine 
blood tests were done.

Three-dimensional facial images, blood and routine physical indicators (full 
blood count, blood basic metabolic panel and anthropometry) were collected 
at Beijing Centers for Diseases Control and Prevention (CDC) and Centers for 
Preventive Medical Research. All participants provided written informed consent 
prior to this study. All participants (Han Chinese people, 169 females and 163 
males) in this study had no history of facial surgery or facial abnormalities. We 
used the 3dMDface system to capture 3D facial images of about 40,000 vertices 
per face. The detailed procedure of photography capture has been described in 
previous work7.

Human-perceived age. To compare human-perceived age and CNN-predicted age, 
we gathered 50 volunteers to evaluate the ages of all samples. We randomly shuffled 
the images and asked the volunteers to guess the ages of participants by looking 
at their facial images. Each image was evaluated by 5.33 volunteers on average (at 
least 3 and no more than 6), and the average guess of the volunteers was used as the 
human-perceived age of each face.

Age prediction using 3D facial images. Chronological age. Birth dates were 
obtained by the Chinese-government-issued official Resident Identity Card. Age 
was rounded to the nearest year for model training.

Data structure of 3D facial images. The 3D facial images were stored in the OBJ file 
format and with corresponding texture images. The OBJ-format file contains four 
types of information for a 3D face surface with N points: (1) N lines of ‘v’ plus XXX 
(where X is a floating-count number), representing coordinates of the N points; (2) 
N lines of ‘vn’ plus XXX, representing the normal vector of each of the N points; (3) 
N lines of ‘vt’ plus XX, representing coordinates of each point in the corresponding 
texture image; and (4) multiple lines starting with ‘f ’ and three groups of integers, 
representing that these three indexes form a triangle, which further constitutes 
multiple triangle meshes in the 3D facial images.

Nose-tip annotation. The nose tip is the most salient and stable feature point 
on 3D facial images. We first detected the nose-tip point on a face using sphere 
fitting30. We used a sphere with a radius equal to r to fit regions over the 3D face 
and took the point with the smallest least square difference as the nose-tip point. 
To calculate the least square of every point p with coordinate (xp,yp,zp), we first 
summarized all points on the 3D face with a distance of <1.5 cm from point p, and 
subjected them to the following formula:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xp � xi
� 2þ yp � yi

� 2þ zp � zi
� 2q

<1:5

where i represents the ith vertex on the 3D face. Then, we assumed that there 
were, in total, N points with a distance of <1.5 cm to point p. These points were 
annotated as pi ¼ xi; yi; zið Þ; 1≤ i≤N

I
. At the same time, we assumed that the centre 

of the sphere had coordinate (ox,oy,oz); then, the sphere could be represented using 
the following formula:

x � oxð Þ2þ y � oy
� �2þ z � ozð Þ2¼ r2

where r represents the radius of the sphere. For points pi = (xi,yi,zi), we calculated 
the distance between the point and the sphere, which can be represented as the 
error:

εi ¼ xi � oxð Þ2þ yi � oy
� �2þ zi � ozð Þ2�r2

���
���

εi ¼ x2i þ y2i þ z2i
� �

� 2oxxi þ 2oyyi þ 2ozzi
� �

þ o2x þ o2y þ o2z � r2
� ����

���

Then to clearly represent the errors, we reformulated the error as:

εi ¼ Y � w1X1 þ w2X2 þ w3X3 þ w0ð Þj j

where w1 ¼ 2ox ;w2 ¼ 2oy ;w3 ¼ 2oz ;w0 ¼ r2 � o2x � o2y � o2z ;Y ¼ x2i þ y2i þ y2i ;
IX1 = xi, X2 = yi and X3 = zi; then, εi can be regarded as the error of the linear 

regression, with X1, X2 and X3 as the independent variable and Y as the dependent 
variable. Taking the derivatives of the least square loss function, we generated the 
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solution for the regression. First, we transformed the regression problem into the 
matrix formula:

x1 y1 z1 1

..

. ..
. ..

. ..
.

xN yN zN 1

2
64

3
75

2ox
2oy
2oz

r2 � o2x � o2y � o2z

2
664

3
775 ¼

x21 þ y21 þ y21
..
.

x2N þ y2N þ y2N

2
64

3
75

To simplify the equation, we assumed:

X ¼
x1 y1 z1 1

..

. ..
. ..

. ..
.

xN yN zN 1

2
64

3
75

W ¼
2ox
2oy
2oz

r2 � o2x � o2y � o2z

2
664

3
775

y ¼
x21 þ y21 þ y21

..

.

x2N þ y2N þ y2N

2
64

3
75

Our regression can be written as:

XW ¼ y

Then we generated the solution for W:

W ¼
2ox
2oy
2oz

r2 � o2x � o2y � o2z

2
664

3
775 ¼ XTX

� �1
XTy

After getting the values for W, we calculated the centre and the radius of the sphere, 
with which we calculated the least square loss of each point on the 3D face:

ox ; oy ; oz
� �

¼ W 1½ 
2

;
W 2½ 
2

;
W 3½ 
2

� �

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W 4½  þW 1½ 2þW 2½ 2þW 3½ 2
4

s

Pose correction of the 3D face. Although the volunteers were asked to sit straight 
and look forward, there were still differences in poses among 3D faces, including 
looking slightly left or right looking and looking up or down. As we had already 
identified the location of the nose tip, we corrected the face pose using points 
around the nose tip. Assuming that the coordinate of the nose tip was (xnose,ynose,
znose), points on the 3D face with a distance to the nose tip of <5 cm were used to 
correct the pose; that is, points were subjected to:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xnose � xið Þ2þ ynose � yið Þ2þ znose � zið Þ2

q
<5

We assumed there were in total M points, pi ¼ xi; yi; zið Þ; 1≤ i≤M
I

, satisfying the 
requirements.

We then wrote these M points in matrix format as:

X ¼

p1
p2
..
.

pM

2
664

3
775 ¼

x1 y1 z1
x2 y2 z2
..
. ..

. ..
.

xM yM zM

2
6664

3
7775

We applied principal component analysis (PCA) to these data, and average 
coordinates of each axis were calculated:

�x ¼ 1
M

XM

i¼1

xi; �y ¼
1
M

XM

i¼1

yi; �z ¼
1
M

XM

i¼1

zi

Each sample’s coordinates minus the average coordinates of each axis were 
calculated:

X1 ¼

x1 � x y1 � y z1 � z
x2 � x y2 � y z2 � z

..

. ..
. ..

.

xM � x yM � y zM � z

2
6664

3
7775

Then the covariance matrix of X1 was calculated:

C ¼
cov x; xð Þ cov x; yð Þ cov x; zð Þ
cov x; yð Þ cov y; yð Þ cov y; zð Þ
cov x; zð Þ cov y; zð Þ cov z; zð Þ

2
4

3
5

where

cov x; yð Þ ¼
PM

i¼1 xi � �xð Þ yi � �yð Þ
M � 1

Finally, the eigenvalue and corresponding eigenvector were calculated:

Cγ ¼ λγ

where λ is the eigenvalue and γ is corresponding eigenvector. The maximum 
eigenvalue λ1 and corresponding eigenvector γ1 represent the direction of 
maximum variance of the data, which is the direction along the nose bridge. The 
second maximum eigenvalue λ2 represents the direction of second maximum 
variance of the data, which is the direction of the nose from left to right. The 
minimum eigenvalue λ3 and corresponding eigenvector γ3 represent the direction 
of minimum variance of the data, which is the direction from the inner part of the 
head to the outer part of the head along the eye sight direction. The direction of γ1 
was considered to be the y axis, the direction of γ2 was the x axis and the direction 
of γ3 was the z axis. We rotated the coordinates of the 3D faces into the coordinate 
system with the three eigenvectors γ1, γ2 and γ3 as the x, y and z axis, respectively, 
which were used to correct the pose using the following formula:

Xnew ¼ UX1 ¼ U X � �x �y �z½ ð Þ
where

U ¼ γ2 γ1 γ3½  ¼
γ21 γ11 γ31
γ22 γ12 γ32
γ21 γ13 γ33

2
4

3
5

Projection to the X–Y plane. Our 3D facial images were projected onto the X–Y 
2D plane with the z buffer and scan line algorithms, with sampling resolution at 
0.1 cm. All RGB pixel information was kept in the projected 2D facial image.

Eye-corner and mouth-corner detection. Besides detecting the nose tip, we detected 
another six landmarks (outer corner of left eye, inner corner of left eye, outer 
corner of right eye, inner corner of right eye, left mouth corner and right mouth 
corner) on each face. We first annotated these 6 landmarks manually for 50 females 
and 50 males, and trained the machine-learning algorithm (PCA) to recognize 
these landmarks. Then, all 100 samples were projected onto the X–Y plane using 
the corresponding six landmarks. For each of the 6 landmarks, the outer corner of 
the left eye for example, blocks centred at the landmark of size 21 × 21 pixels were 
used to extract the RGB texture and depth information. Then, for each landmark, 
feature vectors with 1,764 values were extracted to represent the landmark. The 
outer corners of the left eyes for all 100 samples were represented by feature 
vectors:

X ¼

x11 x12    x1m
x21 x22    x2m
..
. ..

. . .
. ..

.

xn1 xn2    xnm

2
6664

3
7775

where m = 1,764 and n = 100. Similarly, we first subtracted the matrix by the 
average of each feature:

X1 ¼

x11 � x*1 x12 � x*2    x1m � x*m
x21 � x*1 x22 � x*2    x2m � x*m
..
. ..

. . .
. ..

.

xn1 � x*1 xn2 � x*2    xnm � x*m

2
6664

3
7775

where

x*i ¼
1
n

Xn

j¼1

xji

representing the average of the ith feature over all samples, where j is the index 
used to iterate through all the samples. Similarly to the pose correction, we then 
calculated the covariance matrix of X1 and selected the maximum 16 eigenvalues 
(represented by v) and used their corresponding eigenvectors to construct the 
feature subspace:

U ¼ v1 v2    v16½ 

We could then easily reflect the 1,764 features of the outer corner of the left eye 
for 100 samples into the subspace. For other faces, to annotate the outer corner 
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the of left eye, we reflected the features of all candidate points into the established 
subspace. Then, we represented the coordinates of the candidate points in the 
subspace:

xtest new ¼ U xtest � �x*1 �x*2    �x*m½ ð Þ

xtest new ¼ w1 w2 w3    w16½ 

where �x*1 �x*2    �x*m½ 
I

 is the average vector in the training set. We next 
defined the distance between candidate points and the outer corners of the left eye 
in the training set with the following formula:

d ¼
X16

i¼1

w2
i

var wtrain
ið Þ

where var wtrain
i

� �

I
 is the variance of wi in the training set. The point that reached the 

smallest distance from the training set was regarded as the outer corner of the left 
eye in the test image. Similar processes were applied to the other five landmarks.

Additional landmark detection. In addition to the seven landmarks detected above 
(nose tip, outer corner of left eye, inner corner of left eye, outer corner of right eye, 
inner corner of right eye, left mouth corner and right mouth corner), we detected 
landmarks such as the chin point, upper lip point and lower lip point. We localized 
points of these landmarks on the 3D face on the basis of prior knowledge. For 
example, the upper lip point is below the nose tip, with z-axis local maximum, and 
with the high red colour intensity under it because the lips have higher red colour 
intensity than the face skin; similarly, the lower lip point is below the upper lip 
point, with z-axis local maximum, and with high red colour intensity above it; and 
the chin point is below the lower lip point, showing a small angle from the point to 
the points above and below.

Preparation of 3D faces for deep learning. All 3D facial images were first preprocessed 
for landmark detection, posture correction and registration. Different 3D faces have 
different numbers of points and different sizes. On the 2D face, we used dlib (version 
19.8.0)31 to detect the left and right profiles of the face, and then cropped the faces 
according the profiles and landmarks, using the left- and right-most edges as left 
and right boundaries, with the bottom boundary set at the chin point and the upper 
boundary by the coordinates of the chin point and nose-tip point (assuming the y 
axis of the nose tip is y1, and the y axis of the chin point is y2, where y2 > y1, then the 
y axis of the upper boundary is y1 �

ffiffiffi
2

p
y2 � y1ð Þ

I
). During the final cropping of the 

image, we extended each boundary by 2 pixels, and the depth image was cropped at 
the same place. All RGB images and deep images were resized to 224 × 224 pixels 
before using deep learning.

Deep CNNs. We combined 3 popular CNN architectures, GoogleNet32, VGG33 and 
ResNet34, in Python to predict age. For all three CNNs, we used one node as the 
last layer.

Ensemble of deep CNNs. To further improve our accuracy, we used an ensemble 
of three CNNs, GoogleNet, VGG with 16 layers and ResNet with 50 layers 
to predict age. We trained and generated the results of the three networks 
independently, and generated an ensemble by taking their average, with the 
formula y ¼ ðGoogleNet þ VGGþ ResNetÞ=3

I
, where GoogleNet, VGG and ResNet 

represent the ages predicted by these three CNNs, respectively, and y represents the 
emsemble predicted age.

Loss functions and CNN training. For age prediction, we replaced the last layer 
of the three CNNs with one node without any activation functions, and we used 
the mean absolute difference between the predicted age and actual age as the loss 
function:

L ¼ 1
batch size

Xbatch size

i¼1

yi � byij j

where batch_size is one of the parameters when training the CNN, indicating the 
number of samples in each weight-update process. Here, we set batch_size equal to 
32. yi represents the actual age of the ith sample and byi represents the predicted age 
of the ith sample.

We then used the Adam (as implemented in TensorFlow version 1.8.0)35 
algorithm to update the weights, with initial learning rate set at 0.0001 and 80% 
probability to keep nodes in dropout layers.

Data augmentation. During training of deep CNN models, we reflected all samples 
from left to right, which can increase the amount of training data.

Tenfold cross-validation. To validate the prediction ability for age using 3D facial 
images, we divided all our 4,719 samples into 10 groups randomly for 10-fold 
cross-validation. During each evaluation process, the model was trained with 
eight of the ten groups as a training set, hyperparameters were determined 

with one of the remaining groups as the validation set and the predictive 
performance was tested on the last group as the test set. When evaluating the 
models with independent datasets, we used all ten models generated from the 
ten cross-validation to test the datasets independently, and used the average 
performance level as the final prediction capability.

Age prediction using 3D facial images with PLS model. The prediction of age with 
PLS has been described in detail in previous work7.

AgeDiffs association with health parameters. Age-corrected AgeDiffs were 
used to calculate the Pearson’s correlation coefficient and corresponding P values. 
Benjamini–Hochberg correction was used for FDR calculation.

RNA isolation, sequencing and normalization. We drew 10 ml of total fasting 
blood from each participant in the early morning. Plasma and PBMCs were 
separated using a Sigma-Aldrich HISTOPAQUE-1077 kit. RNA was extracted with 
TRIzol (Invitrogen) using the protocol provided by the manufacturer. Samples 
with RNA integrity number (RIN) > 8 were processed with the Illumina TruSeq 
stranded total RNA with Ribo-Zero sample preparation kit and then sequenced 
on an Illumina HiSeq 2000 machine according to the manufacturer’s instructions. 
Paired-end reads (126 bp) were mapped to the GRCh38 reference human genome 
using STAR9 version 2.4.0d.

RNA normalization. Only reads with a unique match to the reference genome 
were kept. Protein-coding gene quantification was performed using GENCODE 
version 24 annotation36. The normalization and quantification were conducted by 
Cufflinks (version 2.2.1)37.

De novo identification of exonic circRNA. A computational pipeline 
(CIRCexplorer2 (ref. 38), version 2.3.5) was used to predict exonic circRNA. Human 
PBMC ribo-minus paired-end RNA-seq raw data were mapped to the hg38 human 
reference genome using TopHat-Fusion (implemented in TopHat version 2.1.1), and 
then were parsed by CIRCexplorer2 to obtain circRNA back spliced junction reads. 
CircRNA read counts from all samples were merged together and scaled to TPM.

Age prediction using transcriptome. The ‘pls’ package39 in R was used for 
PLS regression. Both chronological age and gene-expression levels (log2 scaled) 
were combined into one matrix as the input. The leave-one-out (LOO) method 
(predictors were trained using all but one sample and then used to predict the age 
of the left-out sample) was applied to obtain the age prediction of each sample. 
MAD was calculated by the difference between predicted age and chronological 
age. Saturation analysis was conducted by randomly selecting a designated 
percentage of all the samples and training the PLS model on such samples, and 
then was evaluated using both MAD and PCC.

AgeDiff correction. To study age-independent associations of AgeDiff, we 
corrected AgeDiff by fitting to a polynomial model to age as follows, with span 0.75 
and degree 2:

cAgeDiff ¼ AgeDiff � loess AgeDiff  Ageð Þ

Unlike other AgeDiffs, there are significant differences between sexes in 
FacePerceivedAgeDiff and FaceCnnPerceivedAgeDiff (P < 0.05), and we corrected 
these two AgeDiffs in males and females separately.

Correlation between AgeDiff SD and chronological age. A non-overlapping 
sliding-window approach was used to study the relationship between AgeDiff SD 
and age. Samples were sorted by age, and then a non-overlapping sliding window 
with different bin size (100 or 20 in Jidong cohort, 20 or 10 in Beijing cohort) 
was used to group samples and calculate mean of age and s.d. of AgeDiffs in each 
sliding window.

Term-enrichment analysis. Gene set enrichment analysis (GSEA)40 and 
Fisher’s exact test in DAVID41 were utilized for the term-enrichment test. 
KEGG pathway genes were downloaded from the KEGG database using the 
REST API. The cytokine genes were collected from the ImmPort database42 and 
senescence-associated secretory phenotype (SASP) genes were collected from a 
review of SASP43.

Projection of cell fraction and gene-expression features on the average 3D facial 
image. With the ‘pls’ package in R, the cell fraction or another feature was treated 
as the dependent variable, while the 3D facial images were treated as independent 
variables for PLS regression. The loadings of the first two components weighed by 
the score of each component were combined and projected to the average 3D facial 
image synthesized from the whole cohort.

Lifestyle–regulator–AgeDiff causal-relationship inference. The causal-inference 
test of Millstein et al.11 was adopted with the R package ‘cit’44. Briefly, each of the 
lifestyle–gene expression–AgeDiff relationships was tested separately to classify 
them into mediated by, consequential to or independent of gene expression.  
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A causal inference met the following four criteria: (1) lifestyle and AgeDiff were 
correlated; (2) lifestyle was associated with gene expression after adjusting for 
AgeDiff; (3) gene expression was associated with AgeDiff after adjusting for 
lifestyle; and (4) lifestyle was independent of AgeDiff after adjusting for gene 
expression. To summarize the P values of the four tests, the intersection-union 
test was used as the P value for the whole causal-inference test. Significant results 
with P < 0.05 and FDR < 0.1 (calculated by the ‘cit’ package44) were retained. The 
network was visualized by Cytoscape (version 3.5.0).

The input regulatory genes included: (1) human signal-transduction-pathway 
gene sets downloaded from KEGG pathway (https://www.genome.jp/kegg/
pathway.html) and Reactome (https://www.reactome.org/) databases; (2) 
human transcription factors, enzymes, transporters, receptors and ion channels 
downloaded from the Animal Transcription Factor Database (http://www.
bioguo.org/AnimalTFDB/), the human DEPhOsphorylation Database (http://
www.depod.bioss.uni-freiburg.de/) and IUPHAR/BPS database (http://www.
guidetopharmacology.org/); and (3) cytokines and SASPs from ImmPort database42 
(https://www.immport.org/shared/genelists) and a review on SASPs43.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The regulatory genes used in building the causal-inference network are from the 
KEGG pathway (https://www.genome.jp/kegg/pathway.html), Reactome (https://
www.reactome.org/), Animal Transcription Factor Database (http://www.bioguo.
org/AnimalTFDB/), human DEPhOsphorylation Database (http://www.depod.
bioss.uni-freiburg.de/), IUPHAR/BPS database (http://www.guidetopharmacology.
org/) and ImmPort42 (https://www.immport.org/shared/genelists). ImageNet 
(http://image-net.org/) was used for pretraining.
Results of facial-image, transcriptome and lifestyle associations are searchable 
at http://www.picb.ac.cn/hanlab/hub-fi/. Three-dimensional images and other 
metadata sensitive to personal identification cannot be publicized or shared 
according to our participant consent agreement. Individual sequencing raw 
data, as they contain genetic information, will be available on request under the 
condition of approval of the ethics committee of Shanghai Institute of Nutrition 
and Health, Chinese Academy of Sciences abiding China Human Genetic Resource 
law. Mapped read counts and FPKM expression values of coding genes from the 
RNA-seq are deposited to the public repository NODE at https://www.biosino.org/
node/project/detail/OEP001041.
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Extended Data Fig. 1 | Age and perceived age prediction using CNN. a, Deep learning performance in training, validation and testing datasets for age 
prediction. Average loss (mean average difference (MAD), upper panel) and accuracy (Pearson Correlation Coefficient (PCC), lower panel) were plotted 
over training epochs. One epoch indicates the network weights updates over the whole training dataset for one time. b, Overlap between FaceCnnAge, 
FaceCnnPerceivedAge, FacePerceivedAge, and FacePlsAge in younger (left), normal (middle), and older (right) samples. The lower table shows the 
one-tailed Fisher’s exact test p-values with light red indicate p < 0.05. c, d, Independent validation of FaceCnnAge (c) and FaceCnnPerceivedAge (d) on 
332 facial images collected in Beijing, 2012 (left) and 358 facial images collected in Beijing, 2015 (right).
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Extended Data Fig. 2 | AgeDiff-associated lifestyles in Beijing (2012) cohort by ANOVA test. The p value is derived from ANOVA (n=341). All results 
with p < 0.05 are shown here. Data are presented as mean +/- SD.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Heterogeneity of aging rate at different ages in Jidong and Beijing cohort. a, The standard deviation of randomly guess a number 
between 20–85 (n=4719, the boxes show 25%, 50% and 75% quantile and whiskers show maximum and minimum value). b, Relationship between 
age and the standard deviation of four AgeDiffs with bin size as 20 in Jidong cohort. Data are presented as mean +/- SD. c, Heatmap of aging-related 
facial features, health parameters and RNAs in Beijing (2012) cohort sorted by increasing chronological age (PCC with age, FDR < 0.05). Features were 
ranked by PCC from low to high (ALB: albumin, A/G: albumin/ globulin, TP: total protein, GGT: glutamyl transpeptidase, ALP: alkline phosphatase, CREA: 
creatinine, CHO: total cholesterol). d, e, Relationship between age and the standard deviation of four AgeDiffs with bin size as 20 (d) and 10 (e) in Beijing 
(2012) cohort. Data are presented as mean +/- SD.
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Extended Data Fig. 4 | Broken stick regression of SD of AgeDiffs against age. a, b, Broken stick regression in Jidong cohort with bin size 100 (a) and 20 
(b). c, d, Broken stick regression in Beijing (2012) cohort with bin size 20 (c) and 10 (d).
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Extended Data Fig. 5 | Age prediction using transcriptome. a–c, Mean absolute difference (MAD) (top panel), Pearson correlation coefficient (PCC) 
(bottom panel) saturation analysis and correlation against chronological age of transcriptomes PLS age prediction for all the samples (a), female (b) 
and male (c), respectively. d, Enriched GO biological processes terms of PLS top 10% (upper) or 20% (lower) loading genes. P values are derived from 
hypergeometric test (Methods). e, Overlap between FacePlsAge, FaceCnnAge, RnaPlsAge, and FaceCnnPerceivedAge in younger (left), normal (middle), 
and older (right) samples. The lower table shows the one-tailed Fisher’s exact test p-values with light red highlight indicate p < 0.05.
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Extended Data Fig. 6 | Associations between cell types and AgeDiffs. a, Cytokines (left panels) and antigen processing and presentation (right panels) 
enrichment scores as a function of four AgeDiffs. P values are derived from permutation test (Methods). b, Association of RNA-seq deconvoluted cell type 
fractions and AgeDiffs (* p<0.1, ** p<0.05, *** p<0.01 derived from two-sided t test, and * Benjamini-Hochberg correction derived FDR < 0.1).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Expression profile of expressed non-coding RNAs against chronological age. a, The heatmap of expressed lncRNAs (FPKM > 2) 
significantly related to chronological age (FDR < 0.1). The samples (columns) were sorted by age and lncRNAs were sorted by PCC of expression to age 
from high to low. b, The heatmap of expressed circRNAs (TPM > 2) significantly related to chronological age (FDR < 0.1). The samples (columns) were 
sorted by age and circRNAs were sorted by PCC of expression to age from high to low. c, Top three enriched terms for parent genes of age-up (top) and 
age-down circRNAs. P values are derived from hypergeometric test (Methods). d, The correlation between age and total expression level of circRNAs.  
P value is derived from two-sided t test.
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