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Improved nucleosome-positioning algorithm
iNPS for accurate nucleosome positioning
from sequencing data
Weizhong Chen1,2,*, Yi Liu1,3,*, Shanshan Zhu1, Christopher D. Green1, Gang Wei1 & Jing-Dong Jackie Han1

Accurate determination of genome-wide nucleosome positioning can provide important

insights into global gene regulation. Here, we describe the development of an improved

nucleosome-positioning algorithm—iNPS—which achieves significantly better performance

than the widely used NPS package. By determining nucleosome boundaries more precisely

and merging or separating shoulder peaks based on local MNase-seq signals, iNPS can

unambiguously detect 60% more nucleosomes. The detected nucleosomes display better

nucleosome ‘widths’ and neighbouring centre–centre distance distributions, giving rise to

sharper patterns and better phasing of average nucleosome profiles and higher consistency

between independent data subsets. In addition to its unique advantage in classifying

nucleosomes by shape to reveal their different biological properties, iNPS also achieves higher

significance and lower false positive rates than previously published methods. The application

of iNPS to T-cell activation data demonstrates a greater ability to facilitate detection of

nucleosome repositioning, uncovering additional biological features underlying the activation

process.
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T
he technology of micrococcal nuclease (MNase) digestion
combined with high-throughput sequencing (MNase-seq)
is a powerful method to map the genome-wide distribution

of nucleosome occupancy1–3. Although it has a high demand on
sequencing depth, with the promise of probing whole genome-
wide chromatin remodelling events incurred by all transcription
factor binding and chromatin modifications at once and the
rapidly decreasing sequencing cost, its popularity has continued
to increase over the years. However, the analysis of nucleosome
positions is still at its infancy. Nucleosome positioning relies on
nucleosome signal coverage, or the frequency distribution formed
by MNase digested DNA fragments in a cell population. A
genome location where there is nucleosome occupancy in a
number of cells would have high sequencing read coverage. Thus,
the essential principle for nucleosome position detection is to find
the locations where the MNase-seq coverage is enriched. An
effective and efficient strategy is to generate a nucleosome
sequencing profile that is able to intuitively depict the nucleosome
distribution in a wave-form, based on which a peak-calling
procedure is then used to find the peaks on the wave-form profile.

Zhang et al.4 have developed an algorithm for nucleosome
detection called nucleosome positioning from sequencing (NPS).
In practice, however, the accuracy of the NPS algorithm4

needs much improvement: even if the thresholds for all the
filtering steps in the programme are lowered or eliminated
(Supplementary Table 1), many visually obvious nucleosomes still
could not be detected. To solve this problem, we first identified
the technical problems in NPS contributing to the missing
or mis-detected nucleosomes; then, we developed a new package
‘improved NPS’ (iNPS) by combining the theoretical core
algorithm of NPS4 with new algorithms to address these
technical problems. iNPS exhibits a remarkably improved
performance over the original NPS, detecting nucleosomes with
higher quality, a lower false positive rate and stronger association
with relevant biological events. We also find that NPS’ deficiency
can be largely traced to a hard-coded parameter (Supplementary
Fig. 1a,b); yet, the performance of iNPS is still significantly better
than the ‘customized NPS’ that has the hard-coding problem
fixed (Supplementary Fig. 1c). In addition to the NPS comparison
(both default and customized NPS), we further demonstrated an
overall advantage of iNPS over other recent algorithms used for
nucleosome detection. In particular, iNPS has a unique advantage

of detecting different types of nucleosomes that are associated
with different biological properties based on detected nucleosome
shapes.

The significant increase in accuracy of the iNPS algorithm
tackled the previously thought major limitations of the MNase-
seq technology, namely its low resolution and low consistency in
nucleosome boundary determination5. We now demonstrate that
the limitations do not lie so much in the technology per se, but
rather lie in the accuracy of the computational analysis method.

The iNPS software package is freely downloadable at http://
www.picb.ac.cn/hanlab/iNPS.html.

Results
Improved nucleosome positioning from MNase-seq data. The
original NPS algorithm4 mainly contains the following four steps:
(1) nucleosome scoring for generating a continuous wave-form
signal for a distribution profile of genome-wide nucleosome
positioning, (2) wavelet denoising for the preliminary mild
smoothing of the signal waves, (3) Laplacian of Gaussian
convolution (LoG) for further smoothing the wave profile and
meanwhile detecting inflection points on the profile as the
borders of nucleosome peaks and (4) peak filtering based on the
cutoff of peak shape and the P-value of Poisson approximation.

In NPS, the original nucleosome profile was generated by
extending each MNase-seq tag from the 50 end by 150 bp towards
the 30 position and taking the middle 75 bp as the enriched
nucleosome signal, thus the nucleosomes were represented by the
peaks on the wave-like original profile. Borders of the nucleosome
peaks, represented by paired inflection points on the smoothed
profile, could be detected by LoG (Methods). However, the
original NPS algorithm cannot precisely determine which pairs of
inflection points should be selected as final nucleosomes; thus, as
false positives, some mildly concave parts are determined as
nucleosome positions while some obvious sharp peaks are missed
(Fig. 1a,b). To solve this problem, our iNPS algorithm used a new
method, the first derivative of Gaussian convolution, for detecting
max/min-extremum points to identify each inflection point pair
as ‘main’ nucleosome peaks or ‘shoulders’ (Methods, Fig. 2a).
This new step is based on the observation that a sharp peak has a
summit on the smoothed profile, while a mildly concave shoulder
does not. Then, this step was followed by the next new step for
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Figure 1 | Nucleosomes detection results by the NPS algorithm. (a,b) The nucleosome detection results of the NPS algorithm on the 7,734,000–

7,739,000bp region of chromosome 1 (hg18) in resting human CD4þ Tcells. (a) The detected nucleosomes (orange line). (b) The nucleosome-detection

profile (red line): wave-form signal within the detected nucleosomes.
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Figure 2 | The algorithmic procedure of iNPS. (a) An illustration of the relationship between a ‘main’ nucleosome and a ‘shoulder’ pattern. (b) Flow chart

of the seven algorithmic steps in iNPS. (c) Step-by-step results of iNPS algorithm. Genomic region 148,328,000–148,334,000bp in chromosome 1, hg18 of

human resting CD4þ T cells is used here as an example. Five coloured profile lines are plotted in each panel–blue: original scoring profile, red: Gaussian

convolution smoothed profile, green/purple: LoG convoluted profiles with normal/smaller standard deviations, orange: detected nucleosome peaks. Results

after step 3: detection of candidate ‘main’ nucleosomes/‘shoulders’ (that is, the region of a pair of inflection points with/without max-extreme point

between them). Results after step 4: ‘shoulders’ are determined as independent nucleosomes or dynamic shifting parts of the neighbouring main

nucleosome peaks. Results after step 5: borders of some nucleosomes are adjusted using inflection points identified from the LoG convoluted profiles with

a small standard deviation. Final results: ‘doublets’ patterns are merged and small nucleosome peaks with bad shapes are discarded. (d) The final

nucleosome detection result by NPS on the same genomic region as in c.
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determining whether a ‘shoulder’ candidate should be an
independent nucleosome or merged into the neighbouring ‘main’
nucleosome candidate that has a dynamic shift. Here, the
determination depends on the distance between the shoulder
and the main peaks, their peak height ratio, and, particularly, the
profile shape features between the nearest inflection point on the
adjacent ‘main’ nucleosome peak and the ‘most-winding’ point
(detected by the third derivative of Gaussian convolution) on the
‘shoulder’ (Methods, Fig. 2a, and see examples in Supplementary
Fig. 2). Following these two new major improvements to assure
the accuracy of detecting the ‘main’ nucleosome peaks, fine
adjustments were made, including adjusting nucleosome border,
merging ‘doublets’, and so on, to resolve minor peaks. On the
basis of these improvements, we developed a high-accuracy
nucleosome-positioning algorithm, the iNPS algorithm (Fig. 2b
and see an example of step-by-step optimization in Fig. 2c, and
also see an example of the detection result by NPS in Fig. 2d for
comparison).

As a result of introducing these aforementioned steps, the iNPS
algorithm detected more nucleosomes than NPS, among which
many obvious sharp peaks missed by NPS are retrieved (Compare
Fig. 3a,b versus Fig. 1a,b). The full list of genomic coordinates and
shape features of the exemplary nucleosomes detected (Fig. 3a,b)
are listed in Supplementary Table 2.

The distribution of nucleosome ‘width’, as represented by the
length between two inflection points of each detected nucleosome
peak, is plotted in Fig. 3e. It is clear that for most nucleosomes,
the ‘width’ is around 70–90 bp, which is consistent with the fact
that the middle 75 bp of extended tags was taken to represent
the enrichment signal of a nucleosome. The sharp peak of the
nucleosome width distribution suggests that the majority of
the detected nucleosomes are well-positioned and isolated single
nucleosomes. Furthermore, the distances between the centres of
two neighbouring nucleosomes are around 160–210 bp, peaking
at 180 bp (Fig. 3f). This distance distribution is consistent
with the fact that nucleosomes are wrapped by a stretch of
147 bp of DNA and separated by B38 bp of linker DNA6. We
then specifically assessed the influence on the distributions
and average nucleosome profiles by different parts of the iNPS
pipeline. By sequentially activating each algorithmic step
(including substeps of Step 6: merging ‘doublets’ and Step 7:
filtering) of iNPS, we observed an increasingly sharper
distribution of nucleosome widths (Supplementary Fig. 3a), an
increasingly better approximation of the neighbouring
nucleosome centre distance to the theoretical value (147 bp
nucleosomeþ 38 bp linker) (Supplementary Fig. 3b) and
increasingly sharper peaks/better phasing of the average
nucleosome profiles (Supplementary Fig. 3e) from Step 3 to
Step 7 on chromosome 1 of the resting CD4þ T cells. We also
observed a mild decreasing of the number of output nucleosomes
through these steps (Supplementary Table 3). The analysis of the
distribution of nucleosome ‘width’ and neighbouring nucleosome
centre distance was also repeated on Chromosome 19 of activated
CD4þ T cells. The results are qualitatively similar and shown in
Supplementary Fig. 3c,d.

In contrast, the original NPS algorithm results in a much more
diffuse and flattened distribution of the nucleosome width
(peaking around 70–110 bp) (Fig. 3e) and the neighbouring
centre distance (around 130–180 bp, peaking at 150 bp) (Fig. 3f).
Therefore, the comparison suggests that our iNPS algorithm is
able to detect a larger number of well-fixed and well-isolated
nucleosomes with a more precise centre distance between
neighbouring nucleosomes. Moreover, the distributions generated
by iNPS are more consistent between human resting and
activated CD4þ T cells compared with those generated by
NPS (Fig. 3e,f).

Although the customized NPS shows better performance than
the original default NPS (Supplementary Fig. 4a,b versus
Fig. 1a,b), its performance is still not as good as iNPS, as shown
by the distribution of nucleosome width, the distribution of
neighbouring centre distance, and the consistency between
resting and activated T cells (Supplementary Fig. 4d,e).

Quality of genome-wide nucleosome detection. For each
detected nucleosome, iNPS scores the confidence level using
Poisson test as applied by NPS4 and some other peak-calling
algorithms for ChIP-seq data, such as MACS7. Unlike NPS and
MACS, iNPS not only identifies the tag enrichment within the
peak region (see definition in Methods) for each detected
nucleosome peak by using upper-tailed Poisson test, but it also
identifies the tag depletion within the adjacent ‘valley’ regions
(see definition in Methods) flanking the corresponding
nucleosome peak by using lower-tailed Poisson test, resulting
in two respective scores ‘� log10(P-value_of_peak)’ and
‘� log10(P-value_of_valley)’ (see ‘Step 8’ of ‘Algorithmic steps
in iNPS’ in Methods for details).

We compared the genome-wide quality of nucleosome output
by iNPS/NPS by performing Poisson tests for all the detected
nucleosomes and by sorting them in decreasing order of
‘� log10(P-value_of_peak)’ and ‘� log10(P-value_of_valley)’,
respectively. Then, the average � log10(P-value) of nucleosomes
(per 10,000-sized bins) are plotted for the top 5,000,000 predicted
nucleosomes by iNPS or NPS on the whole genome of the resting
and activated CD4þ T cells, respectively (Fig. 4a,b). It is clear
that iNPS outperforms NPS.

In addition, we also evaluated the genome-wide detection
quality of the customized NPS, which is better than the default
NPS (the blue lines versus green lines in Supplementary Fig. 5), as
expected. However, iNPS still yields overall higher � log(P-value)
scores (the red lines versus blue lines in Supplementary Fig. 5)
than customized NPS, demonstrating the best quality of the
detected nucleosomes by iNPS.

Robustness of genome-wide nucleosome detection. To compare
the robustness of the nucleosome detection by iNPS and NPS, we
randomly and evenly divided the MNase-seq data1 into two
subsets (50% tags in each subset) and obtained two nucleosome
detection results by running iNPS and NPS with the same
parameter settings on the two data sets (Methods). Then, the
robustness of the algorithms was quantified by Spearman’s rank
correlation coefficient (SCC) between results on the two
independent subsets of the data to measure their similarity
(Methods). Using the DNA fragment of Figs 1 and 3 as an
example, the SCC for iNPS-derived profiles (measuring the
similarity of the orange and green lines in Fig. 3c) is 0.681, while
the SCC of NPS and customized NPS-derived profiles (measuring
the similarity of the orange and green lines in Fig. 3d and
Supplementary Fig. 4c) is 0.417 (NPS) and 0.635 (customized
NPS), respectively.

At the whole-genome level, the differences in SCCs between
detections on two halves of tags across each of the 24 human
chromosomes (1–22, X and Y; Fig. 5a, Supplementary Fig. 6 and
Supplementary Table 4) are highly significant (average±s.d. are
0.489±0.029, 0.339±0.039 and 0.444±0.042 for iNPS, NPS, and
customized NPS, respectively, with one-tailed paired t-test
P¼ 3.37� 10� 21 between iNPS and NPS, P¼ 8.76� 10� 9

between iNPS and customized NPS).
To further compare the three algorithms using another

independent dataset, we ran a similar analysis on the MNase-
seq data for activated CD4þ T cells. The SCCs (average±s.d.)
for iNPS, NPS and customized NPS are 0.454±0.036,
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0.309±0.028 and 0.409±0.036, respectively (one-tailed paired
t-test P¼ 1.99� 10� 24 between iNPS and NPS and P¼ 2.07
� 10� 11 between iNPS and customized NPS, Fig. 5a,
Supplementary Fig. 6 and Supplementary Table 4).

As background controls, we calculated the SCCs expected from
random simulations on chromosome 1 by randomly selecting
‘detected nucleosomes’ with the same number and total coverage
length of the two real nucleosome detection ‘subresults’ given by
iNPS. They have an average±s.d. of 0.113±0.00046 based on
100 times permutations, giving rise to an empirical P-value
o0.01 for iNPS-derived SCCs. We also performed a genome-
wide simulation across all the 24 chromosomes (1–22, X and Y),
the results are similar to that of the 100 simulations on
Chromosome 1 (average SCC±s.d.¼ 0.105±0.015).

In addition, since nucleosomes are well phased at TSS and
CTCF-binding sites, we specifically tested the robustness of the
two algorithms in the regions of TSS (� 2,000 to þ 2,000 bp) and
CTCF (� 1,000 to þ 1,000 bp) in the resting CD4þ T cell. The
results are similar to those obtained at the single chromosome
level (Fig. 5b).

Average profiles of detected nucleosomes. We then examined
the differences between the average nucleosome detection profiles
obtained by retaining only the wave-signal within the nucleosome
peaks detected by NPS and iNPS (See the red line in Fig. 1b
versus Fig. 3b for an example). From the average profiles and the
s.d. derived from the two algorithms surrounding TSSs (which are
further classified according to high, medium and low gene tran-
scription levels) and CTCF-binding sites (Fig. 5c,d; see also
Supplementary Fig. 7 and Supplementary Fig. 8 for more exam-
ples), we can clearly observe the following key differences
between the profiles generated by the two algorithms. (1) For
iNPS, the average nucleosome distributions around TSSs at the
three expression levels are clearly separated and consistent with
the expression levels. Even at TSSs of lowly expressed genes, the
nucleosome phasing can still be observed, whereas NPS gives no
signal for TSSs of lowly expressed genes, and the differences
between the profiles for medium and high levels are not as dis-
tinctive (Fig. 5c). (2) The nucleosome peaks detected by iNPS are
sharper than those by NPS (See examples in Supplementary

Fig. 7). (3) The s.d. profiles (s.d. of the signals at each 10 bp
interval within the TSS±2 kb region) by iNPS also have larger
fluctuations than NPS (Fig. 5c), indicating that iNPS is more
sensitive in identifying the boundary of nucleosomes with dif-
ferent shapes. (4) Similar to these improvements at the TSSs, at
CTCF-binding sites, both the average and s.d. profiles of
nucleosomes detected by both algorithms support remarkable
performance improvements of iNPS versus NPS (Fig. 5d, and see
examples in Supplementary Fig. 8).

Differential nucleosome positioning. As transcription factor
binding and chromatin remodelling are associated with the
change of nucleosome positions or occupancies8,9, we
investigated the differentially positioned nucleosomes between
resting and activated CD4þ T cells (see pipeline in
Supplementary Fig. 9). The MNase-seq tags contributing to the
iNPS-detected nucleosomes were selected and inputted into
DANPOS10 to obtain differentially positioned nucleosomes
(Methods, see the example fragment in Fig. 6a) for the analysis
of biological significance (Methods). Among the Top 30 enriched
pathways and transcription factor binding motifs (Fig. 6b),
several are associated with the T-cell activation, such as
‘Sphingosine 1-phosphate (S1P) pathway’11,12, ‘Integrin family
cell surface interactions’13, ‘LKB1 signalling events’14–16,
‘Proteoglycan syndecan-mediated signalling events’17, ‘TRAIL
signalling pathway’18, ‘VEGF and VEGFR signalling network’19,
‘IL3-mediated signalling events’20 and motif (‘TGGAAA’) for
NFAT transcription factor family (nuclear factor of activated T
cells) binding. Moreover, the largest network component
connecting these transcription factors is significantly larger than
random expectation (Methods, Fig. 6c,d, size of 62 nodes versus
an average of 21 nodes of 10,000 randomly constructed networks
among the same number of proteins, empirical P-value o10� 4).
Finally, co-citation analysis suggested that iNPS-derived
transcription factors yields high average PubMed counts (6.542)
with a significant P-value (Po0.001), showing significant
biological correlation with T-cell activation (Methods).

The same analysis was also performed using the NPS and
customized NPS. Since DANPOS was a necessary algorithmic
module in the differential analysis, it is interesting to run the
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Figure 4 | Comparing the quality of nucleosomes detected by iNPS and NPS. (a,b) Significance of the peak/valley regions of the detected nucleosomes,

quantified by ‘� log10(P-value_of_peak)’ (a) and ‘� log10(P-value_of_valley)’ (b). The genome-wide MNase-seq data of both resting and activated

CD4þ T cells are used, and the � log(P-value) of the top 5,000,000 nucleosomes ranked by ‘� log10(P-value_of_peak)’ (a) and ‘� log10

(P-value_of_valley)’ (b) are plotted with each bin showing the averaged value of 10,000 nucleosomes.
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whole analysis pipeline using DANPOS alone without any a
priori nucleosome detection steps.

The differential analysis of nucleosome positioning (see
examples in Supplementary Figs 10a, 11a and 12a) between the
resting and activated CD4þ T cells, reveals that the NPS
algorithm only detects a few enriched pathways (fails in this task;
Supplementary Fig. 10b). Yet all the other three algorithms (iNPS,
customized NPS and DANPOS) basically detect the same set of
enriched pathways, among which iNPS’ enrichment level is the
highest (Fig. 6b, Supplementary Figs 11b and 12b).

Likewise, in terms of predicting enriched motifs, the enrich-
ment level by iNPS (Fig. 6b) is again significantly higher than
NPS (Supplementary Fig. 10b) and customized NPS
(Supplementary Fig. 11b), but is slightly lower yet at the same
level of DANPOS (Supplementary Fig. 12b).

For the transcription factor network analysis, the size of the
largest component for the iNPS-derived network (Fig. 6c,d,
empirical P-value 10� 4) is much larger than that from NPS
(Supplementary Fig. 10c,d, empirical P-value¼ 0.0942) and
customized NPS (Supplementary Fig. 11c,d, empirical P-value

T_cell_type Resting Resting Activated Activated

Algorithm iNPS NPS iNPS NPS

Chromosome 1 0.502 0.352 0.467 0.322
Chromosome 2 0.478 0.331 0.441 0.302
Chromosome 3 0.472 0.321 0.436 0.299
Chromosome 4 0.457 0.305 0.424 0.286
Chromosome 5 0.472 0.323 0.436 0.298

Chromosome 6 0.471 0.320 0.434 0.297

Chromosome 7 0.475 0.331 0.440 0.303

Chromosome 8 0.476 0.326 0.440 0.298

Chromosome 9 0.520 0.363 0.489 0.335

Chromosome 10 0.491 0.348 0.453 0.312

Chromosome 11 0.482 0.343 0.445 0.309

Chromosome 12 0.472 0.328 0.435 0.299

Chromosome 13 0.493 0.326 0.465 0.307

Chromosome 14 0.507 0.351 0.477 0.323

Chromosome 15 0.528 0.369 0.497 0.340

Chromosome 16 0.517 0.374 0.482 0.337

Chromosome 17 0.490 0.371 0.448 0.320

Chromosome 18 0.471 0.322 0.436 0.296

Chromosome 19 0.494 0.375 0.462 0.327

Chromosome 20 0.499 0.362 0.463 0.322

Chromosome 21 0.526 0.364 0.498 0.334

Chromosome 22 0.560 0.431 0.521 0.365

Chromosome X 0.413 0.267 0.331 0.215

Chromosome Y 0.463 0.224 0.479 0.282

Robustness validation (SCC) on the genome Robustness validation (SCC) around TSS
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CTCF-binding sites
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Figure 5 | Comparison of the robustness and average profiles of nucleosome detection by iNPS and NPS. (a) Heatmap of SCCs between the

‘nucleosome detection profiles’ derived from the two independent subsets containing 50% tags each. SCCs are calculated for the whole genome and for

every chromosome (1–22, X and Y) in both resting and activated CD4þ T cells. (b) Similar to a, but the SCCs are computed over regions around

TSS/CTCF-binding sites in human resting CD4þ cells. (c) The average nucleosome detection profiles with s.d. by NPS and iNPS. Three sets of genes are

selected according to high, medium and low transcription levels. For each set, the average and s.d. of the signals at 10 bp resolution are plotted in

warm/cold colours to represent the corresponding nucleosome detection results by iNPS/NPS. The lines in the middle: average profiles of detected

nucleosomes; the lines in the upper and lower parts of the figures are the average±s.d. profiles for the iNPS/NPS results. (d) Average nucleosome profiles

with s.d. at CTCF regions by iNPS/NPS.
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Figure 6 | Analysis of differential nucleosome positioning between the resting and activated CD4þ T cells revealed by iNPS. (a) An exemplary

genomic region shows the differential nucleosome positioning based on iNPS’ results in the resting and activated T cells. (b) Top enriched pathways and

‘MSigDB Predicted Promoter Motifs’ associated with genomic regions showing differential nucleosome positioning between the resting and activated
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10� 4), yet comparable with DANPOS (Supplementary Fig. 12c,d,
empirical P-value 10� 4).

Finally, in the CoCiter’s gene-term analysis, the iNPS-derived
transcription factors yield higher average PubMed document
counts and more significant P-values than NPS and customized
NPS, while the two indices for iNPS and DANPOS are comparable.

Taken together, iNPS has better performance in the differential
analysis of nucleosome positioning than NPS and customized
NPS. Although DANPOS is specifically designed for this purpose
and has been shown to be better than other algorithms, we show
iNPS yields comparable results with DANPOS and it is even
better for predicting biologically significant pathways.

Comparison with other software packages. We also compared
iNPS to other algorithms for nucleosome detection, including
NSeq21, NucleoFinder22, nucleR23, NOrMAL24, PING25,
TemplateFilter26 and DANPOS10, using the resting CD4þ T
cell MNase-seq data for chromosome 1 (ref. 1) (Methods), and
compared them with iNPS (Supplementary Fig. 13).

NSeq and NucleoFinder detect nucleosomes by finding the
centre positions of nucleosomes. These two packages can
accurately identify the centre positions of nucleosome peaks
(Supplementary Fig. 13d,e) but cannot detect the borders of
nucleosomes. In contrast, iNPS (Supplementary Fig. 13b) pro-
vides the range for each nucleosome where the signal is most
enriched. nucleR also detects nucleosome positions by finding the
summit of peaks after noise filtering, but it is unable to separate
nucleosomes well, resulting in inaccurate border determination
(compare Supplementary Fig. 13b,f).

NOrMAL and PING detect nucleosome positions based on
probabilistic models whose parameters and quantity are esti-
mated from the MNase-seq data. From the profiles on
Chromosome 1, these algorithms apparently cannot match the
other algorithms (Supplementary Fig. 13g,h). In addition, as
PING artificially enforced the final width for all the nucleosomes
to be 200 bp in the ‘postPING’ step, it sometimes reports adjacent
nucleosomes with overlapping positions (Supplementary
Fig. 13h). Moreover, NOrMAL could only detect nucleosomes
on a small chromosomal fragment. In the tests, we had to divide
the total sequencing tags of chromosome 1 into 4100 parts at
‘nucleosome deserts’ (long chromosome regions 41,000 bp
without MNase-seq coverage) (Methods) and run the programme
on every part, which altogether took 6.5 h to finish.

TemplateFilter identifies nucleosome locations where the
forward and reverse read distributions correlate with a series of
model templates. Despite the high accuracy of TemplateFilter
(Supplementary Fig. 13i), it is only able to detect nucleosomes on
a small chromosomal fragment. DANPOS is a pipeline mainly
designed for analysing dynamic nucleosome positioning and
occupancy. It also contains a crude peak-calling algorithm inside
which it cannot determine the borders of nucleosomes precisely.
It can well detect sharp peaks, but it is unable to exclude noise
between peaks (Supplementary Fig. 13j).

As more quantitative measurements, we compared the
distribution of nucleosome widths (Supplementary Fig. 13k) and
the distribution of distances between two neighbouring nucleo-
some centres (Supplementary Fig. 13l) for the nucleosome
positioning results on chromosome 1 in resting CD4þ T cells.
While iNPS generated a nucleosome width distribution between
70 and 90 bp (peaking at 80 bp; Supplementary Fig. 13k) and a
neighbouring nucleosome centre distance between 160 and 210 bp
(peaking at 180 bp; Supplementary Fig. 13l), the other algorithms
generated more diffuse and flattened distributions with ambiguous
maximum (except the distribution of the neighbouring nucleo-
some centre distances generated by DANPOS).

To compare the quality of nucleosome output by different
algorithms, we first performed Poisson tests for all the detected
nucleosomes. Then, we compared the average � log10(P-value) of
nucleosomes (per 10,000-sized bins) for the top 500,000 predicted
nucleosomes (on Chromosome 1 of the resting CD4þ T cells) by
each algorithm. It is clear that iNPS outperformed all other
algorithms against which it was compared (Fig. 7a,b). Paired
t-tests between iNPS and other algorithms show a significantly
higher � log10(P-value) for iNPS detection than other algorithms
(Supplementary Table 5). Compared with the differences among
different algorithms, there are relatively very small differences
among the stepwise results of iNPS, and all these steps yield better
nucleosome detection quality than the other algorithms.

Furthermore, it is also important to show this improvement is
not accompanied by an increase in the false positive rates by
iNPS. Since it is hard to know the ground truth of nucleosome
positioning in the genome, to quantify the likelihood of different
algorithms to yield false positive nucleosome predictions, we
generated synthetic MNase-seq data sets by performing rando-
mized simulations (see Supplementary Table 3/Supplementary
Fig. 3e (dotted purple line) for the numbers/sharpness of
nucleosome peaks detected by iNPS on the simulated data) and
used the ratio of the number of detected nucleosomes in the
synthetic data versus real data as a surrogate measure of ‘false
positive rates’ (Methods). From the surrogate ‘false positive rate’
curves (based on ‘P-value of peak’ or ‘P-value of valley’; Fig. 7c,d),
it is clear that the iNPS algorithm has the lowest ‘false positive
rates’ among all the algorithms compared. Paired t-tests between
iNPS and other algorithms show a significantly lower false
positive rate for iNPS detection than other algorithms
(Supplementary Table 6). This firmly demonstrates that iNPS
enjoys the lowest false positive rates in calling nucleosome peaks.
Moreover, the false positive rates for the intermediate steps of
iNPS are also consistently lower than other algorithms.
Specifically, when comparing the performance of these steps,
we found that at high x axis values (representing nucleosomes
with lower significance), Step 7’s false positive rates are lower
than Step 3 when considering peaks yet slightly higher when
considering valleys. This observation is consistent with the
operation that we filter out some low-quality peaks in Step 4–Step
7 so that the peaks’ quality is improved at the cost of the valleys’.

Moreover, a further detailed comparison of iNPS with the
other packages (Table 1) indicates an overall advantage of iNPS,
which includes well-detected nucleosomes, unambiguous nucleo-
some positions with ‘steep slopes’ as clear borders, sharp
distributions of neighbouring distances, detailed feature descrip-
tions for each detected nucleosome (for example, height, area
under the curve and isolated/merged peaks determination) and
user convenience.

Four types of nucleosomes identified by iNPS. According to the
shapes of detected nucleosome peaks, iNPS is able to identify four
main types of nucleosomes—‘MainPeak’ (an isolated ‘main’
nucleosome peak), ‘MainPeakþ Shoulder’ (a ‘main’ peak asso-
ciated with a ‘shoulder’), ‘MainPeak:doublet’ (a merged ‘doublet’)
and ‘Shoulder’ (an independent ‘shoulder’). Each type of
nucleosome has a distinctive distribution of nucleosome width
(length between two inflection points of each detected nucleo-
some peak; Supplementary Fig. 14a,b), and each kind of neigh-
bouring nucleosome pair (four nucleosome types have altogether
10 kinds of neighbouring nucleosome pair) has a distinct dis-
tribution of neighbouring centre distance (Supplementary
Fig. 14c,d). Compared with the ‘MainPeak’ nucleosomes, which
account for B80% of the detected nucleosomes, the ‘Shoulder’
nucleosomes have a shorter width and closer distance to nearby
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nucleosomes, while the ‘MainPeakþ Shoulder’ and ‘Main-
Peak:doublet’ nucleosomes are wider between inflection bound-
aries and farther from nearby nucleosomes (Supplementary
Fig. 14c,d). These observations suggest that these non-‘Main-
Peak’ nucleosomes are perhaps associated with nucleosome
destabilization. As the histone variant H2A.Z27–29 or
transcription factor binding30–33 often induces nucleosome shift
or destabilization, we examined the average H2A.Z profiles and
average transcription factor motif density profiles around every
nucleosome (� 1,000 to þ 1,000 bp) for each type of nucleosome
(Methods; Fig. 8). Unlike the other two types, the average
profiles for the doublet types (‘MainPeakþ Shoulder’ and
‘MainPeak:doublet’) have an H2A.Z/nucleosome peak at the
centre position (see the green and red lines in Fig. 8a), indicating
enrichment of H2A.Z at these two types of non-‘MainPeak’
nucleosomes. Moreover, the transcription factor motif density

distribution has a unique phase for the doublet nucleosomes: for
each of the two types of nucleosomes, the highest transcription
factor motif density peaks overlap with the nucleosomes (green
and red lines in Fig. 8b), while for ‘MainPeak’ nucleosomes, or
other well-phased nucleosomes on either side of any nucleosome,
the average transcription factor motif density profile has two high
peaks at the valley flanking the nucleosome (Fig. 8b). This
suggests that doublets are more likely to be associated with ‘on-
site’ transcription factor binding on the nucleosome, consistent
with their role as mobile or destabilized nucleosomes. We further
separately examined the average H2A.Z profiles and average
transcription factor motif density profiles for nucleosomes of
different distances to the nearest TSS (r2, 2–10, 10–100 and
4100 kb; Supplementary Figs 15 and 16). These profiles are
consistent with the patterns observed based on the total
nucleosome profiles. Taken together, the nucleosome types
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Figure 7 | Comparison of the nucleosome detection quality and false positive rates among different steps of iNPS and other algorithms on

chromosome 1 of the resting CD4þ Tcells. Solid lines: iNPS and other algorithms; Dotted lines: the stepwise results of iNPS. (a,b) Significance of the tag

distribution in peak or valley of detected nucleosomes. (a) Peak regions, quantified by ‘� log10(P-value_of_peak)’ and (b) valley regions, quantified by

‘� log10(P-value_of_valley)’. The top 500,000 nucleosomes output by each algorithm are used and the average � log(P-value) per 10,000 nucleosomes

are plotted. (c,d) Comparison of false positive rate based on ‘P-value of peak’ (c) and ‘P-value of valley’ (d), evaluated by comparing the number of

nucleosomes detected from real and randomly simulated MNase-seq data sets. The x axis is the number of top ranked nucleosomes predicted by each

algorithm, and the y axis is the false positive rates. Each point on a curve is the average false positive based on 10 times of simulation, and the s.d.

is not plotted since they are very small (about 10�4–10� 3). Significance of the differences of nucleosome detection quality (a,b)/false positive rates (c,d)

between different algorithms is quantified by paired t-tests, shown in Supplementary Tables 5 and 6, respectively.
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identified by iNPS based on detected nucleosome shapes also
implicate different biological functions of nucleosomes.

Discussion
Deep genome sequencing after MNase digestion (MNase-seq) has
been an effective way for inferring a genome-wide map of
nucleosome positions, in which deriving nucleosome profiles from

sequence tags is a key step. In iNPS, we followed NPS to represent
the core part of a nucleosome using the middle 75 bp in each
150 bp-extended tag, since taking either full length or the middle
point would probably result in a decrease of nucleosome resolution
(Supplementary Fig. 13a) or a decrease of signal enrichment level.

To facilitate further peak calling, a step of profile smoothening
could reduce noise. There are various kinds of tactics available,
such as Fast Fourier Transform methods used in nucleR23 and the

Table 1 | Comparison of iNPS with other nucleosome-positioning algorithms.

iNPS Default NPS Customized
NPS

NSeq NucleoFinder nucleR NOrMAL PING TemplateFilter DANPOS

Clear borders
for nucleosomes

Yes Yes Yes No No No* Yes Now Yes Yes

AUC for
nucleosome
peaks

Yes No No No No No No No No No

Accuracy Yes No Yes Yes Yes No No No Yes Yes
Isolated/
merged peaks
determination

Yes No No No No No No No No No

Nucleosomes in
chr1

985,407 589,604z 842,318z 557,829z Unknown 1,260,733y 654,069 537,280 867,681 943,273

Neighbouring
nucleosome
centre (Peak
maximum)

160–210 bp
(180 bp)

140–180 bp
(160 bp)

140–180 bp
(160 bp)

115–135 bp
(125 bp)

Unknown 100–175 bp
(120 bp)

180–270 bp
(235 bp)

135–175 bp
(150 bp)

130–170 bp
(145 bp)

170–220 bp
(190–195 bp)

User
convenience

Run time on
chr1

B1.7 h o1 h o1 h B5min|| 3 h 10 h 6.5 hz 0.5 h|| 7 hz o1 h

Depended
environment

Python Python,
cython,
NumPy,

Pywavelets

Python,
cython,
NumPy,

Pywavelets

Java R with
multicore

R withE10
packages

Linux with
gþþ

R withE30
packages

Linux Python, R,
rpy2, numpy

Automation Yes Yes Yes Yes Yes No Noz No Noz Yes
Optimized

parameters
Yes No No Yes Yes No Yes Yes Yes No

Output wave-
form profile

Yes Yes Yes Partly No Yes No Partly No Yes

AUC, area under the curve; chr, chromosome.
*nucleR assumes the detected nucleosomes are 147 bp long.
wThe size of all the output nucleosomes by PING is 200 bp after the ‘postPING’ step, resulting in overlap of some nucleosomes with their neighbours.
zTotal nucleosomes detected without P-value or FDR cutoff.
ySince nucleR was unable to well distinguish the nucleosome boundaries, too many false positives were detected.
||Programme was run with 20 CPU cores.
zDue to the limited data processing capacity of NOrMAL and TemplateFilter, the input data was manually divided into 115 parts, and the detection was done part-by-part.
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Figure 8 | Average H2A.Z and transcription factor motif density profiles for the four types of nucleosomes identified by iNPS. (a) Average H2A.Z

profiles. (b) Average transcription factor (TF) motif density profiles (solid lines). Nucleosome profiles are also shown as dotted lines for TF-motif

enrichments comparison in b.
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wavelet- and convolution-based method used in NPS4. In
practice, we found that the Gaussian convolution method alone
was sufficiently effective for profile smoothing. In addition,
combining Gaussian convolution with basic derivative operations
(convolution with first, second (Laplacian) and third derivatives
of Gaussian) in iNPS could correspondingly detect max/min-
extremum points (summit/valley), inflection points and the most
winding positions on the smoothed profiles. These key locations
play important roles in nucleosome positioning: the inflection
points identify borders of nucleosomes, the max/min-extremum
points help to distinguish the ‘main’ nucleosome candidates and
the most winding positions play a part in fate-decision for the
‘shoulder’ candidates.

After finishing the basic step of nucleosome detection, iNPS
adjusts nucleosome borders of the preliminary results, merges
closely located ‘doublets’ and filters some small peaks with bad
shapes. With these additional procedures, the final results show
increased accuracy (Fig. 3a,b) together with a sharper distribution
of nucleosome width and neighbouring distances (Fig. 3e,f).
Different from other packages, iNPS uses both statistical scores
(‘� log10(P-value_of_peak)’ and ‘� log10(P-value_of_valley)’)
and geometrical features (peak height, peak width and area
under the curve) of the detected nucleosome peaks to quantify the
confidence level of each nucleosome, which not only increases the
detection consistency but also provides further biological insights
such as the distinction between well-fixed nucleosomes and
potentially destabilized nucleosomes.

On the basis of the whole genome-wide nucleosome position-
ing by iNPS in both resting and activated CD4þ T cells, we
found that the differentially positioned nucleosomes are highly
enriched for immune pathways (Fig. 6b) and for transcription
factors, which coherently interact with each other (Fig. 6c), which
are otherwise not possible to identify using NPS (Supplementary
Fig. 10b,c). This highlights the great importance of precisely
detecting the nucleosome positions.

We also compared the consistency and boundary resolution of
nucleosome detection between iNPS and NPS. In terms of
consistency, our iNPS algorithm could detect the nucleosome-
positioning profiles between two independent subsets of MNase-
seq data with a SCC 0.489±0.029 (average±s.d. for the 24
chromosome in resting CD4þ T cells), which increased
significantly from NPS’s 0.339±0.039 (P¼ 3.37� 10� 21;
Fig. 5a). In terms of boundary resolution, the nucleosome
detected by iNPS has a much sharper width distribution than
NPS, with a twofold peak height of that by NPS, and an average
width±s.d. of 84.312±15.056 bp and 83.960±15.150 bp (around
the peak-region of 40–130 bp for resting and activated T cells,
respectively) by iNPS versus 89.913±17.778 bp and
88.864±17.614 bp by NPS, indicating significantly reduced
variation of the iNPS detection results (F-test P-value¼ 0;
Fig. 3e). Thus, a better nucleosome detection algorithm, such as
iNPS, will definitely enhance the application of MNase-seq
technology in various fields of biological research.

Finally, a good software tool should be convenient for users. A
primary requirement is the direct applicability of the software on
a large chromosome and preferably a whole genome. In this
respect, iNPS successfully performed nucleosome positioning on
the whole human genome but NOrMAL and TemplateFilter
could not. Furthermore, the installation and execution of iNPS is
easy on the Linux system.

Taken together, the improved iNPS algorithm, compared with
the original NPS, showed a significantly higher sensitivity,
detection quality, robustness and lower false positive rate in
detecting genome-wide nucleosome positions from the MNase-
seq data. Further comparison of iNPS with other software
packages indicated an overall advantage of iNPS, including higher

accuracy with clear nucleosome borders, higher detection cover-
age with better quality, lower false positive rates, more uniform
neighbouring distance, more detailed result descriptions for
downstream analysis and better user convenience.

Methods
Data sets and software package. Tag coordinate bed files for MNase-digest
sequencing data of human CD4þ T cells1 was downloaded from National Heart
Lung and Blood Institute (NHLBI), National Institutes of Health (NIH) (http://
dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcellnucleosomes.aspx). Tag coordinate
bed file for H2A.Z ChIP-seq data of human CD4þ T cells34 was downloaded from
NHLBI, NIH (http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcell.aspx). Gene
expression microarray data for human CD4þ T cells1 was downloaded from the
GEO repository with accession number GSE10437. Coordinate information of TSSs
was downloaded from the UCSC repository (http://hgdownload.cse.ucsc.edu/
goldenPath/hg18/database/refFlat.txt.gz) on 30 July 2012. The coordinate
information of CTCF-binding sites35 was downloaded from http://bioinformatics-
renlab.ucsd.edu/rentrac/wiki/CTCF_Project, and converted into hg18 system.
Human protein network data was downloaded from STRING (version 9.05)
(ftp://string-db.org/STRING/9.05/protein.links.detailed.v9.05.human_only.txt.gz) on
5 August 2013. A predicted transcription factor motif coordinates map for
lymphoblastoid cell lines36 was downloaded from the ‘CENTIPEDE’ website (http://
centipede.uchicago.edu/data/CentipedeAllP99.bed.gz). For software packages, NPS
(Nucleosome Positioning from Sequencing), version 1.3.2, was downloaded from
http://liulab.dfci.harvard.edu/NPS/ on 1 December 2011. NSeq21 was downloaded
from https://github.com/songlab/NSeq on 19 April 2013. NucleoFinder22 was
downloaded from https://sites.google.com/site/beckerjeremie/ on 22 April 2013.
nucleR23, version 1.9.0, was downloaded from http://bioconductor.org/packages/
devel/bioc/html/nucleR.html on 25 April 2013. NOrMAL24 version beta2, was
downloaded from http://code.google.com/p/normal-nucleosome-mapping-
algorithm/downloads/list on 22 April 2013. PING25, Version 2.3.1, was downloaded
from http://www.bioconductor.org/packages/devel/bioc/html/PING.html on 28 April
2013. TemplateFilter26 was downloaded from http://compbio.cs.huji.ac.il/
NucPosition/TemplateFiltering/Home.html on 22 April 2013. DANPOS10, version
2.1.2, was downloaded from http://code.google.com/p/danpos/ on 14 May 2013.

Algorithmic steps in iNPS. iNPS is developed based on Zhang et al.’s methods4,
from which we adopted two key steps—‘nucleosome scoring’ (generating
continuous wave-form signal for genome-wide nucleosome positioning) and
‘Laplacian of Gaussian (LoG) convolution’ (detecting inflection points to find
candidate nucleosomes). We then designed and integrated our new steps to develop
the iNPS algorithm (Fig. 2b), including the following eight steps.

Step 1—nucleosome scoring. Wave-form nucleosome signal profile, with a
resolution of 10 bp, is obtained by extending each sequencing tag (each tag is
extended from its 50 end by 150 bp (B1 nucleosome length) toward its 30 direction
(Fig. 2b inset)), of which the middle 75 nt was taken to represent the enrichment of
nucleosome signal. The nucleosome score at each coordinate is summed by all the
extended tags covering this coordinate, and these tags on either sense or antisense
strand contribute equally to the score at this coordinate.

Step 2—Gaussian convolution. Discrete Gaussian convolution is performed as
equation (1) to smoothen the wave-form nucleosome signal profile:

yðxÞ ¼ f ðxÞ�gðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

p
Xxþ 3s

k¼x� 3s

f ðkÞe�
x� kð Þ2
2s2 ð1Þ

where x is the coordinate on the genome, f(x) is the original nucleosome scoring at
coordinate x, y(x) is the smoothed signal at coordinate x, deviation s¼ 3 and the
range (x–3s, xþ 3s) is used for profile smoothening. s¼ 1 is also used to generate
another mildly smoothed profile for the ‘borders adjustment’ in Step 5. Besides this
basic step, convolutions with Gaussian derivatives are also performed to detect
important sites on the wave-form profile:

1. Convolution with the first derivative of Gaussian is used as equation (2) to
detect max/min-extremum points of the smoothed profile (where the convolution
results¼ 0, s¼ 3):

d
dx

ðf ðxÞ�gðxÞÞ ¼ f ðxÞ� d
dx

gðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

p
Xxþ 3s

k¼x� 3s

f ðkÞ � x� k
s2

� �
e�

ðx� kÞ2
2s2 ð2Þ

2. Convolution with the second derivative (Laplacian) of Gaussian (LoG) is used
as equation (3) to detect inflection points of the smoothed profile (where the
convolution results¼ 0, s¼ 3), representing the candidate position of nucleosome
peaks (See the formula below). This operation is also repeated for (s¼ 1) to detect
another set of inflection points on the mildly smoothed profile for border
adjustment in Step 5.

d2

dx2
ðf ðxÞ�gðxÞÞ ¼ f ðxÞ� d2

dx2
gðxÞ

¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

p
Xxþ 3s

k¼x� 3s

f ðkÞ ðx� kÞ2

s4
� 1

s2

� �
e�

ðx� kÞ2
2s2 ð3Þ
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3. Convolution with the third derivative of Gaussian is used as equation (4) to
detect the ‘most winding positions’ of the smoothed profile (where the convolution
results¼ 0, s¼ 3), especially for the ‘shoulder’ patterns:

d3

dx3
ðf ðxÞ�gðxÞÞ ¼ f ðxÞ� d3

dx3
gðxÞ

¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

p
Xxþ 3s

k¼x� 3s

f ðkÞ 3ðx� kÞ
s4

� ðx� kÞ3

s6

� �
e�

ðx� kÞ2
2s2 ð4Þ

Step 3—candidates identification. A pair of inflection points is identified as a
‘main’ nucleosome candidate if it has a max-extremum point located between
them, otherwise it would be identified as a ‘shoulder’ candidate.

Step 4—determining shoulder nucleosomes. Every shoulder candidate is
determined as an independent nucleosome or the dynamic shifting part of the
neighbouring ‘main’ nucleosome candidate, based on the relationship between
itself and its neighbour, which includes the distance, peak height ratio between
them and profile shape features between the nearest inflection point on the
adjacent ‘main’ nucleosome peak and the ‘most-winding’ point (detected by the
third derivative of Gaussian convolution) on the ‘shoulder’ (Fig. 2a). The profile
shape features include the concavity/convexity level of the Gaussian smoothed
profile (high concavity level suggests that a shoulder is likely to be an independent
nucleosome) and the correlation between original and smoothed profile (high
correlation level is indicative that a shoulder is more likely to be a dynamic part of
the adjacent nucleosome; see examples in Supplementary Fig. 2).

Step 5—inflection border adjustment. Some relatively ‘big’ nucleosome peaks
would probably affect the border detection (using inflection points) of their
neighbouring nucleosomes with ‘small’ peaks. Thus, inflection points on the mildly
smoothed profile (LoG with s¼ 1 in Step 2) are used to adjust the borders of these
‘small’ nucleosome peaks.

Step 6—merging doublet nucleosomes. Each ‘doublet’, a pair of extremely closely
distributed adjacent peaks with similar height, is merged as one nucleosome. It is
based on the relationship between the two neighbouring peaks, which includes the
neighbouring centre-to-centre distance, length of the ‘valley’ region (the genomic
region between the right inflection point of the left peak and the left inflection
point of the right peak), peak height ratio between them and the convex level of the
Gaussian smoothed profile in the ‘valley’ region. These criteria are implemented in
Step 6 (Supplementary Table 7). If any criterion is satisfied, a pair of adjacent peaks
is merged to form a ‘doublet’ (Supplementary Fig. 17, see Supplementary Note 1 for
details, and see examples in Supplementary Fig. 18).

Step 7—filtering. Some small nucleosome peaks with bad shapes are discarded.
This step is based on the level of concavity (the average LoG) of the peak, the
length between two inflection points, and the length of the longest segment with a
negative LoG within a peak and so on. We implement six alternative criteria in this
step (Supplementary Table 8). If any criterion is satisfied, a detected peak is judged
to be of low quality and filtered out subsequently (Supplementary Fig. 17, see
Supplementary Note 2 for details, and see examples in Supplementary Fig. 19).

Step 8—statistical evaluation. For each detected nucleosome, the chromosome
region between two inflection points is defined as the peak, while the two flanking
chromosome regions between one inflection point of this nucleosome and the
nearest flanking inflection point of its neighbouring nucleosome are defined as the
valley (To avoid unbound valley in the nucleosome desert regions, the maximal size
of a valley is set to 1,000 bp). We use the upper- and lower-tailed Poisson test to
estimate the enrichment and the depletion levels of sequence tags in the peak and
valley regions, respectively.

Each MNase-seq tag is extended to 150 bp long from the 50 to the 30 direction.
The centre of the 150 bp region is used to represent the genomic coordinate of the
tag in the Poisson test. Specifically, we compute the number of sequence tags whose
genomic coordinates fall into a nucleosome peak or into a valley region. We use
Poisson test to estimate the probability of more than (or equal to) the number of
observed tags located in a peak region (resulting in a P-value of peak), or less than
(or equal to) the number of observed tags located in a valley region (resulting in
two P-values for the left/right flanking valleys, respectively). To be conservative in
calculating the P-values for a peak region, the maximum tag density of the
symmetrically extended 1, 5 or 10 kb genomic regions is computed and then scaled
by the length of the peak region as the background tag counts. Conversely, the
minimum tag density of the extended 1, 5 or 10 kb genomic regions is used for the
test of a valley region.

For convenience, we define ‘� log10(P-value_of_peak)’ of a nucleosome as the
significance level of a nucleosome peak; ‘� log(P-value_of_valley)’ of a nucleosome
as the significance level of the two flanking valleys of a peak, where ‘P-value of
valley’ is simply the geometric mean of the P-values of the two flanking valley
regions.

Evaluating false positive rate. The first step to quantify false positive rates of
nucleosome detection is to estimate the confidence level of the peak and flanking
valley regions of each detected nucleosome. This is achieved by performing upper
and lower-tailed Poisson tests to assess the tag enrichment and depletion in the two
regions, resulting in ‘P-value of peak’ and ‘P-value of valley’, respectively. Then,
given a fixed P-value cutoff, surrogate ‘false positive rates’ of nucleosome detections
can be quantified by the ratio of the expected number of ‘false positive’ detections

from simulated data versus the number of ‘true’ detections from the actual MNase-
seq data.

For this purpose, we use chromosome 1 of the resting CD4þ T cell to simulate
10 matched synthetic MNase-seq data sets. This is achieved by dividing the
chromosome into 100,000-bp windows and randomly shuffling tag positions in
each window. Then, by setting cutoffs with decreasing ‘� log10(P-value)’ scores for
nucleosomes detected from the real data, we generate two false positive rate curves,
each focusing on the significance of peak and valley regions, respectively. To avoid
inaccurate estimation, the rate is only calculated when the denominator is larger
than 500, and the P-value cutoffs are upper-bounded by 0.99 to exclude
degenerated nucleosomes with no flanking valley (typically outputted by PING,
DANPOS and nucleR) from the analysis.

Robustness evaluation of nucleosome detection algorithms. The input MNase-
digest sequencing data set was randomly and evenly divided into two subsets, each
containing 50% tags. Then, the same nucleosome-positioning algorithm was run on
the two subsets separately, generating two sets of corresponding ‘subresults’. After
that, the robustness of the algorithm was quantified for the similarity between the
two subresults, by SCC, as follows:

First, we computed the ‘nucleosome detection profile’ for each subresult by
keeping the wave-form signal within the detected nucleosome peaks and excluding
other parts of signal profiles (as the red line in Figs 1b and 3b). Then, we calculated
the SCC value between two nucleosome detection profiles (for example, the orange
and the green line in Fig. 3c,d) to quantify the similarity of the two subresults.

Nucleosome detection around TSSs or CTCF-binding sites. The gene expres-
sion microarray data (GSE10437) for human resting CD4þ T cells1 was used to
select genes with high, medium and low transcription levels, respectively. For any
gene (represented by one or a set of RefSeq IDs) with more than one microarray
probe, the median value of these probes at each sample was taken as the
transcription level for this gene. In total, 18,295 genes with explicit TSS coordinate
information in the UCSC repository were collected and ranked by transcription
level. Then, three sets of genes with 5% highest, 5% medium and 5% lowest
transcription level were selected. For each set of genes, the average ‘nucleosome
detection profile’ (with s.d.) around TSSs (� 2,000 to þ 2,000 bp) were plotted
with 10 bp resolution.

For CTCF-binding sites, we first mapped the genomic coordinates of the CTCF-
binding sites in ref. 35 to hg18. Then, the average ‘nucleosome detection profile’
(with s.d.) around all 31,683 sites (� 1,000 to þ 1,000 bp) were plotted at 10 bp
resolution. Note that different from TSSs, the regions of CTCF-binding sites do not
have ‘upstream’ or ‘downstream’, so every CTCF-binding region was mapped from
lower to higher genome coordinates.

Testing other software packages. For NPS, the parameters for the ‘peak finding’
steps were reset to lower the thresholds or to switch off the filtering
(Supplementary Table 1), while the other parameters were set by default. NSeq was
tested with default setting except the parameter ‘� f’ is set to 1 (no FDR cutoff) and
‘� t’ is set to 20 (run with 20 cores). NucleoFinder needs a reads count file and a
control file as input, so we used an almost empty document as control file here, and
all the other settings were kept default. nucleR was tested following its instructions
on commands, according to which the key parameters were set as the following: in
the ‘processReads’ step, ‘type’ was set to ‘single’ (single-end sequencing),
‘fragmentLen’¼ 147 and ‘trim’¼ 73; in the ‘filterFFT’ step (denoising step),
‘pcKeepComp’ was set to 0.01; in the ‘peakDetection’ step, ‘threshold’ was set to
25% as recommended and ‘width’ was set to 147; in the ‘mergeCalls’ step, ‘min.-
overlap’ was 50, ‘discard.low’ was 0.2 and ‘mc.cores’ was 1, respectively, as
recommended. To test NOrMAL, we divided the total sequencing tags of chro-
mosome 1 at ‘nucleosome deserts’ (long chromosome regions 41,000 bp without
MNase-seq coverage) into 115 parts, each part containing B5� 104 forward/
reverse tags, and then, performed nucleosome detection step-by-step. PING was
tested by following the provided R code sample in the user’s guide: all the para-
meters were set according to recommendation, except that ‘nCores’ was set to 20
(run with 20 cores) in the ‘PING-analysis’ step. TemplateFilter was also tested step-
by-step (as NOrMAL), with parameters ‘-corr_bound’¼ 0.5 (correlation score
bound), ‘-min_width’¼ 80 (minimum nucleosome width), ‘-max_width’¼ 180
(maximum nucleosome width) and ‘-overlap’¼ 0 (no overlap between adjacent
nucleosomes). DANPOS was tested with parameters ‘-q,--height’¼ 1 (the intensity
cutoff for nucleosome calling), ‘-z,--smooth_width’¼ 100 (the smooth width before
peak calling), ‘-e,--edge’¼ 1 (detect edges for peaks), ‘-k,--keep’¼ 1 (save middle
stage files), ‘-x,--pcfer’¼ 1 (do nucleosome calling), ‘-n,--nor’¼N (no normal-
ization), ‘--frsz’¼ 150 (setting the average size of DNA fragment to 150 bp)
and ‘--clonalcut’¼ 0 (don’t adjust clonal signal).

Identifying and analysing differential nucleosomes. Genome-wide nucleosome
positions of resting or activated CD4þ T cells were obtained by running iNPS on
the respective MNase-seq datasets1. Then, the MNase-seq tags within each
extended nucleosome peak region (extending 50 bp on either side) were selected
and inputted into DANPOS10 to obtain differentially positioned nucleosomes.
DANPOS was run with parameters ‘-q,--height’¼ 1 (the intensity cutoff for
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nucleosome calling), ‘-z,--smooth_width’¼ 100 (the smooth width before peak
calling), ‘-e,--edge’¼ 1 (detect edges for peaks), ‘-k,--keep’¼ 1 (saving mid-stage
files), ‘-x,--pcfer’¼ 0 (no nucleosome calling), ‘-n,--nor’¼N (no normalization), ‘--
frsz’¼ 150 (setting the average size of DNA fragment to 150 bp) and ‘--
clonalcut’¼ 0 (don’t adjust clonal signal). At each peak location of the signal,
DANPOS provided a set of P-values and false positive rates (FDRs) to score the
difference of nucleosome signal between resting and activated CD4þ T cells. The
locations meeting any one of the following two criteria, (1) ‘point_diff_FDR’r0.01
with a determined ‘diff_smt_loca’ or (2) ‘smt_diff_FDR’r0.05, were determined as
the significantly different nucleosomes between resting and activated CD4þ T
cells (see the example fragment in Fig. 6a). Then, a 2,000-bp sliding window was
moved across the genome with a 500 bp step size to select the windows enriched
with differentially positioned nucleosomes (B top 1% windows that have Z5
differentially positioned nucleosomes were selected). The differentially positioned
nucleosomes in the windows were used for GREAT (Genomic Regions Enrichment
of Annotations Tool) (Version 2.02) analysis37 to calculate statistical associations
of these nucleosomes with nearby (proximal � 10 to þ 10 Kbp) genes (including
TSS and curated regulatory domains) and to provide enriched biological functional
terms (FDRo0.05 and region-based fold Z2).

To examine the functional coherence of the transcription factors whose motifs
are most enriched (hypergeometric test FDRo0.001 by GREAT) in the iNPS-
detected differentially positioned nucleosomes, we used the functional interaction
network among these transcription factors (constructed by STRING online tool,
Version 9.05, http://string-db.org/). Then, the biological significance of the
transcription factor network was evaluated by using CoCiter’s38 (Version 1.1,
http://www.picb.ac.cn/hanlab/cociter) ‘gene-term’ analysis for all the transcription
factors in the network against two terms ‘T-cell activation’ and ‘activated T cell’.

H2A.Z and transcription factor motif density profiles. For each 10 bp bin
within –1,000 to þ 1,000 bp around each nucleosome, the raw H2A.Z signal is
normalized by the nucleosome signal using the following formula:

normalized H2A:Z signal ¼ raw H2A:Z signal
nucleosome signalþ 1

For transcription factor motif density, genome-wide coordinates of
transcription factor motifs36 were mapped to the � 1,000 to þ 1,000 bp windows
around each nucleosome with a 10 bp resolution.
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