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Microarray and deep sequencing technologies have provided unprecedented opportunities for mapping genome mutations, RNA 
transcripts, transcription factor binding, and histone modifications at high resolution at the genome-wide level. This has revolution-
ized the way in which transcriptomes, regulatory networks and epigenetic regulations have been studied and large amounts of heter-
ogeneous data have been generated. Although efforts are being made to integrate these datasets unbiasedly and efficiently, how best 
to do this still remains a challenge. Here we review major impacts of high-throughput genome-wide data generation, their relevance 
to human diseases, and various bioinformatics approaches for data integration. Finally, we provide a case study on inflammatory 
diseases. 
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Twelve years ago, the unveiling of the first human reference 
genome sequence [1,2] inspired researchers to believe that 
genome-based discoveries would revolutionize the study 
and clinical treatment of human diseases. As genome se-
quences from different individuals became available, com-
parative genomics using computational approaches emerged 
as a powerful method for understanding gene functions at 
the genome-wide level. These approaches unveiled more 
variations between individuals than were initially expected 
[3]. Genomic variations (including single nucleotide poly-
morphism (SNPs) and insertions and deletions (indels)) 
responsible for some of hereditary diseases have been iden-
tified and applied to examine genomes of thousands of indi-
viduals for correlations between the presence of variants 
and traits of interests [4]. First microarrays were used, then 
exon sequencing, and now whole genome sequencing has 
become a popular tool [5,6]. Currently, many variations 

from numerous sites in the genome have been successfully 
connected with different human diseases including various 
types of cancers [6] using DNA sequencing technology 
which underwent a 14000-fold drop in cost between 1999 
and 2009 [7], and computational imputation methods [8]. 

Though most studies have focused on the connection 
between genomic variations (both common and rare) and 
human diseases, mechanisms underlying many of the DNA 
variations have not been clearly addressed. Genome infor-
mation alone is not sufficient to interpret complex diseases 
[9]. Evidence at epigenome, post-transcriptome, and even 
the human microbiome levels is beginning to shed new light 
on human disease-related studies beyond the genome level. 

1  Epigenome and human diseases 

Epigenetics is commonly defined as the study of heritable 
changes in gene activity and expression without changes in 
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the genomic sequence. Epigenetic mechanisms, which 
mainly consist of states and changes in DNA methylation, 
histone modification, non-coding RNAs (ncRNAs), and 
higher-order chromatin structure, are believed to play im-
portant roles in regulating genome functions such as gene 
transcription and genomic DNA replication [10]. Emerging 
lines of evidence indicate that epigenetic modifications sig-
nificantly contribute to normal cellular developmental pro-
cesses and aberrant epigenetic controls are linked to many 
types of diseases [11]. For example, epigenetic mechanisms 
have a profound role in cancer development. On the one 
hand, numerous changes in DNA methylation and histone 
modification accompanied by genomic mutations in many 
loci of the epigenetic regulator genes have been found in 
multiple types of cancers, indicating that epigenetic altera-
tions contribute to cancer development [12]. On the other 
hand, epigenetic mechanisms provide novel targets for 
therapeutic intervention, exemplified by the use of histone 
deacetylase inhibitors (HDACi) to treat several types of 
cancers such as T-cell lymphoma [13]. In addition to its role 
in cancers, epigenetic dysregulation can lead to many im-
mune and neuron disorders including systemic lupus ery-
thematosus (SLE), rheumatoid arthritis, type 1 diabetes, 
Rett syndrome and Alzheimer’s disease [1418]. Although 
knowledge of epigenetic mechanisms in these diseases is 
growing fast, a more comprehensive understanding of epi-
genetic processes is still required for safe and efficient di-
agnosis and treatment of these diseases. 

The first step to understand epigenetic mechanisms is to 
identify the epigenetic changes that contribute to cellular 
phenotypes in normal development and in diseases. Thanks 
to recent advances in next-generation sequencing (NGS) 
technologies, genome-wide maps of the epigenome can be 
generated at a much lower cost, thus providing landscapes 
of DNA methylation, histone modification and other chro-
matin features. In 2007, the first comprehensive epigenome 
map of human CD4 cells was drawn using a pioneering 
combination of chromatin immunoprecipitation followed by 
high throughput sequencing (ChIP-seq); this map includes 
20 histone modifications as well as histone variant H2A.Z, 
RNA polymerase II, and insulator binding protein CTCF 
[19]. In 2008, the NIH Roadmap Epigenomics Mapping 
Consortium was launched with the aim of generating a pub-
lic epigenomic data resource for biomedical research. In this 
project, multiple levels of epigenetic features in different 
cell types are to be mapped; for example, DNA methylation 
is assayed by bisulfite sequencing (BS-seq) which treats 
genomic DNA with sodium bisulfite before sequencing [20], 
histone modifications are mapped by ChIP-seq as men-
tioned above, and chromatin accessibility is evaluated by 
sequencing DNase I hypersensitive sites [21]. 

Although these novel genome-wide approaches can gen-
erate epigenome data sets at different levels, challenges are 
still to integrate them with the transcriptome (all RNA tran-
scripts), to discover epigenomic signatures in a specific cell 

type or disease, and to identify important epigenetic regula-
tors that contribute to normal and disease developmental 
processes. In addition, huge amounts of epigenome data are 
generated by high-throughput sequencing, which requires 
the development of novel computational tools to analyze it. 
For example, Yu et al. [22] have developed a Bayesian 
network model to infer combinational interactions of vari-
ous histone modifications and their effect on transcriptional 
regulation. In addition, using comparative epigenomics 
from both DNA and histone modifications can further re-
veal regulatory features of the genome [23]. 

Epigenomes and combined integrative computational 
analyses have also revealed some of the crucial regulatory 
roles that epigenetic modifications play in many human 
disease-related processes such as aging [2426] and T-cell 
maturation [27,28]. 

2  Transcriptome and human diseases 

The transcriptome in a given organism/cell can be very dif-
ferent between individuals, tissues, cell-types, and devel-
opmental stages. The recent advent of high-resolution tiling 
arrays and next-generation deep sequencing technologies 
have changed the way in which transcriptomes are studied, 
and also made it possible to link transcriptome changes with 
human diseases at the single nucleotide resolution level. For 
example, whole transcriptome analyses have demonstrated 
consistent differences between the normal and autistic hu-
man brain, and provided further evidence of transcriptional 
and splicing dysregulation as underlying mechanisms of 
neuronal dysfunction in autism [29]. Another large-scale 
spatio-temporal transcriptome analysis of human brains 
provided a comprehensive data set of the human brain tran-
scriptome as well as insights into the transcriptional founda-
tions of human neurodevelopment and neurobiological dis-
eases [30]. In addition, using a different enrichment method, 
Chen and colleagues uncovered a number of long noncod-
ing RNAs (lncRNA) from introns [31]. Interestingly, further 
analyses showed that some of these lncRNA were capped 
with small nucleolar RNAs (snoRNAs) at both ends and 
were abundantly expressed from the imprinted region on 
chromosome 15 that has been implicated in human Prader- 
Willi syndrome [32]. Some preliminary evidence in both 
human and mouse has indicated the possible role of the mi-
crobiome in diabetes, obesity, and liver function, though 
in-depth clinical studies are still being carried out [33]. 
When “omic” datasets are combined, a much broader view 
of the mechanism underlying diseases is expected as a result 
[34]. Chen and colleagues showcased an integrative person-
al omics profile consisting of genomic, transcriptomic, pro-
teomic, metabolomic, and autoantibody profiles from a sin-
gle individual over a 14-month period, which revealed ex-
tensive and dynamic changes across healthy and diseased 
conditions, and uncovered both DNA variation and an un-
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expected post-transcriptional mechanism during healthy and 
diseased states [35]. 

3  Digital and quantitative phenome and human 
diseases 

While novel sequencing technologies are rapidly expanding 
the borders of genomics, methodologies for collecting phe-
notype data are also facing major transitions. Large-scale 
high-throughput phenotyping is becoming increasingly im-
portant in the post-genomics era. A comprehensive set of 
phenotypic traits collected at cell, tissue, organ or organism 
level is defined as a phenome [36]. Thus, phenomics can be 
defined as the study of the phenome as well as how it is 
determined or affected by, aside from the environment, the 
other omics data including but not limited to the genome, 
transcriptome, and proteome. 

A central interest of phenomic research is the study of 
morphology and appearance traits. The overall morphology 
and appearance of an organism results from coordinated 
biological actions at all levels. Phenotypes provide rich in-
formation for many research areas such as evolution, de-
velopment and human disease studies. In large-scale genetic 
modification studies in model organisms, morphological 
changes are main pathological evidences of targeted muta-
tions [3739]. The soft tissue of the human face is a com-
plex geometric surface composed of many important organs, 
including eyes, nose, ears, and mouth. Morphogenesis of the 
craniofacial structure is a sophisticated development process 
that involves, to name a few, neural tube closure, midline 
patterning, neural crest generation and migration, outgrowth, 
patterning, and differentiation of the facial primordia and 
the branchial arches [40]. All of these processes are under 
the elaborate control of many signaling pathways such as 
SHH, FGF and BMP pathways [41]. Given its essential bi-
ological functions and structural complexity, the human 
face can tell a great deal about an individual’s health condi-
tions, from genetic defects to common diseases, and from 
aging to mental health. Rare genetic disorders in many syn-
dromes cause characteristic abnormal facial features; for 
example, Down syndrome [42], Rubinstein-Taybi syndrome 
[43], Sotos syndrome [44] and Noonan syndrome [45]. 
More generally, common genetic variants were found asso-
ciated with higher risks of facial dysmorphisms such as cleft 
palate and cleft lip [4649]. Interestingly, some cleft lip risk 
alleles were found associated with facial morphological 
deviations in parents of patients as well as in normal indi-
viduals [50], suggesting the potential use of face examina-
tion in disease risk evaluation. In fact, traditional Chinese 
medicine has long used face examination for general disease 
diagnosis. Apart from disease research, the human face has 
been intensively studied in a wide range of medical fields 

such as forensics [51], psychology [52,53] and aging [54, 
55]. 

Novel technologies and algorithms are being developed 
to either capture comprehensive phenome data or to extract 
specific physiological information from the human face. 
Quick face recognition algorithms have for a long time been 
deployed mainly in security surveillance [56,57]. Recently, 
weak signals extracted from video data were used to meas-
ure cardiac pulse from human face [58]. The introduction of 
high resolution three-dimensional (3D) image acquiring 
technologies such as the 3dMDface® system (www.3dmd. 
com), enabled the collection of complete facial shape and 
texture data at the phenome level. Nonetheless, most current 
studies use only a small fraction of such data, usually a set 
of landmarks and/or their mutual distances and angles 
[5961]. This has largely constrained the power of technol-
ogies to associate facial patterns with specific diseases, be-
cause the pathological phenotype is usually the sum of sub-
tle curvature and pigmentation changes over the entire facial 
surface. Nonetheless, methods have been developed to reg-
ister the 3D facial images by their dense surface meshes (3D 
dense surface registration, 3D-DSR), which allow the thou-
sands of 3D pixel points for each of sample faces to be ana-
tomically aligned across genders, age groups, ethnicities as 
well as disease/control groups [6264]. Inferences and 
analyses can therefore be carried out on the face phenome 
data in a fully quantitative way that is analogous to how the 
genome data is used. Recently, Guo et al. [65] incorporated 
a novel algorithm of accurate 3D face landmarking into the 
registration method, which achieved complete automation 
of 3D-DSR at high throughput and robustness. 3D-DSR 
methods have been used to calculate average faces for dif-
ferent ethnicities, genders and various syndromes [6668], 
and to fit trajectories of face growth over age [69]. More 
importantly, facial signatures of many genetic disorders 
were extracted using 3D-DSR, rendering unprecedented 
power and efficiency to automatic disease discrimination 
[70]. Similar methods have also been tested for complex 
diseases such as autisms and epilepsy [71,72]. Unfortunate-
ly, as most of these disease studies were carried out in Eu-
ropean populations, results cannot be directly applied to 
other ethnic groups because of the obvious divergence of 
basal facial shapes and genomic backgrounds. Peng et al. 
first revealed that, in a Han Chinese population, a locus that 
was associated with non-syndromic cleft lip was also asso-
ciated with common facial morphological variations in 
healthy individuals (unpublished data). In the long run, sub-
tle characteristic features may be extracted not only to di-
agnose rare genetic disorders but also to manage general 
health conditions, such as common disorders like skin aging 
and stress. Given the non-invasive nature of face imaging 
technologies, advances in this field may strongly promote 
applications of personalized medicine. 
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4  Integrative analyses of heterogeneous high- 
throughput data 

High-throughput data is increasing rapidly at the molecular 
level by microarrays and deep sequencing and at the phe-
notypic level by digitized and quantitative imaging. There is 
an urgent need to develop approaches that can efficiently 
integrate different data sets in an unbiased manner. Methods 
ranging from simple correlation based network analysis to 
more sophisticated Bayesian network analysis have all been 
elicited to address this need [73]. New algorithms have also 
been developed to specifically address the problem of inte-
grating different layers of data. For example, flow optimiza-
tion algorithms were used to identify main pathways from 
protein-protein interaction networks that link genetic screen 
hits to gene expression changes involved in neurodegenera-
tion [74], microRNA (miRNA) expression changes and 
mRNA expression changes in response to extremely high 

altitudes [75], or Genome-Wide Association Study (GWAS) 
hits to differentially expressed genes between control and 
disease cohorts [76]. These innovative integration ap-
proaches for different types of data from different layers 
have the potential to identify global regulation patterns, and 
also to provide detailed biological insights regarding com-
plex biological processes, such as the development of com-
plex phenotypes and diseases (Figure 1). 

5  A case study: application to immune diseases 

As discussed above, unprecedented insights that have been 
revealed using sequencing technologies are almost countless. 
One of high impact areas for translational medicine is re-
lated to the study of autoimmune diseases, which affect 
populations in unexpected proportions (2.5 times more than 
cancer and slightly more than heart diseases; American Au  

 

 

Figure 1  Strategy for data generation and integration of multi-layer high-throughput data sets. By generating and computationally integrating high- 
throughput data at various systems levels, a comprehensive atlas of detailed molecular signatures for complex human diseases can be depicted. The atlas can 
then be used to develop systematic explanations of clinical practices and diagnosis for complex diseases, thus laying foundations for the development of 
personalized medicine in the future. Relevant experimental methods for interrogating functional genomic elements and other biomolecules and the major 
downstream analysis approaches are listed (see text for details). ChIP, chromatin immuno-precipitation; ChIA-PET, chromatin interaction analysis with 
paired-end tag sequencing. 
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toimmune Related Diseases Association, Inc. (AARDA) 
statistics (http://www.aarda.org/autoimmune_statistics.php)). 
These maladies often affect patients during their productive 
age. 

Rheumatoid arthritis (RA) is often used as a model dis-
ease for autoimmune diseases. RA is a disabling disease 
with a still unknown etiology that attacks the synovial tissue 
of the joints, leading to loss of function and mobility. It af-
fects 1% of the population worldwide and about 4 million in 
China. RA is strongly prevalent in women (about 70% of 
sufferers are women) [77]. RA, in fact, responds to the defi-
nition of ‘complex genetic disease’. A recent meta-analysis 
[78] conducted on Europeans has shown how complex the 
disease is by adding to the known susceptibility genes, 7 
more, one of which is also shared by the Asian population 
[79]. These results have helped better characterize RA in the 
European and Asian population. 

Challenges that lie ahead include the development of ap-
propriate algorithms and statistics to handle all available 
omics data sets and integrate them into a systems perspec-
tive.  Data integration will also help to clarify how existing 
therapies can be used in novel ways and dosages to coun-
terbalance the side effects of conventional therapies. 

Liu et al. have shown that to achieve this kind of integra-
tion, the translation of existing algorithms can be successful, 
for example, on metagenomic data [80], and that the inte-
gration of multi-omics data sets warrants a larger infor-
mation base than the analysis of single layers. The use of 
multivariate statistics (such as factor analysis) to analyze 
jointly different types of omics data, for example mRNA 
and miRNA, was shown to successfully identify features 
that could not be found by the differential analysis of the 
mRNA and miRNA data sets separately [81,82]. 

Other approaches rely on the flexibility of network rep-
resentations, which allows more information than a list of 
molecules can provide, to be embedded in the algorithms. 
Wu et al. [83] have recently constructed a comprehensive 
RA map of all available transcriptional and post transcrip-
tional information from omic screens (at the time mostly 
microarrays for gene expression). The map was integrated 
with information from known pathways to achieve a well 
interconnected map which could assist topological analysis. 
Interestingly, using this approach we were able to suggest a 
convincing explanation of the systemic effect of R406 in-
hibitor in the treatment of RA and to recommend novel 
contraindications, in particular, for the translation of diabe-
tes therapies to RA patients (Nardini et al., in preparation). 

6  Conclusion 

Different layers of omics data suggest that distinct molecu-
lar and regulatory signatures are involved in disease pro-
cesses. By combining high-throughput sequencing methods 
with computational approaches, researchers can now deve- 

lop comprehensive atlases of sequence-based mechanisms 
together with detailed molecular signatures for further un-
derstanding human diseases in a systematic way. In clinical 
terms, findings can be applied to personal diagnosis and 
then personalized medicine. 
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