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SUMMARY

Epigenetic modifications are thought to be important
for gene expression changes during development
and aging. However, besides the Sir2 histone deace-
tylase in somatic tissues and H3K4 trimethylation
in germlines, there is scant evidence implicating
epigenetic regulations in aging. The insulin/IGF-1
signaling (IIS) pathway is a major life span regulatory
pathway. Here, we show that progressive increases
in gene expression and loss of H3K27me3 on IIS
components are due, at least in part, to increased
activity of the H3K27 demethylase UTX-1 during
aging. RNAi of the utx-1 gene extended the mean
life span of C. elegans by �30%, dependent on
DAF-16 activity and not additive in daf-2 mutants.
The loss of utx-1 increased H3K27me3 on the Igf1r/
daf-2 gene and decreased IIS activity, leading to
a more ‘‘naive’’ epigenetic state. Like stem cell
reprogramming, our results suggest that reestablish-
ment of epigenetic marks lost during aging might
help ‘‘reset’’ the developmental age of animal cells.

INTRODUCTION

Aging is a general and complex biological process that predis-

poses humans to many complex diseases, including neural de-

generative diseases, type 2 diabetes, cardiovascular diseases,

and various cancers (Campisi, 2005; Chien and Karsenty, 2005;

Harman, 2006; Kirkwood, 2005; Longo and Kennedy, 2006).

Genetic screens and naturally occurring mutations have identi-

fied hundreds of genes that affect aging and/or longevity. Among

themany genes that affect organismal life span, the insulin/IGF-1
Cel
signaling (IIS) pathway stands out as a highly conserved and

critical pathway among all organisms studied, regulating both

organism development and aging (Antebi, 2007; Kenyon, 2005).

In C. elegans, the IIS pathway starts from an insulin-like

receptor DAF-2 (Kimura et al., 1997). When activated by the

insulin-like ligands, it recruits a PI3 kinase (AGE-1/AAP-1) (Morris

et al., 1996) and then induces phosphorylation of the down-

stream serine/threonine kinases AKT-1, AKT-2, SGK-1, and

PDK-1 (Hertweck et al., 2004; Paradis et al., 1999; Paradis and

Ruvkun, 1998). This cascade in turn phosphorylates the fork-

head transcription factor (FOXO), DAF-16 (Lin et al., 1997; Ogg

et al., 1997), and prevents it from entering the nucleus to activate

antiaging genes, such as genes that confer resistance to heat,

oxidative stress and DNA damage (Hsu et al., 2003; Jia et al.,

2004; Lamitina and Strange, 2005; Libina et al., 2003; Murakami

and Johnson, 1996; Murphy et al., 2003).

Epigeneticmodifications play important roles in transcriptional

regulation (Berger, 2007; Klose and Zhang, 2007; Li et al., 2007;

Wu and Zhang, 2009; Yu et al., 2008) and in organism develop-

ment (Brosch et al., 2008; Jiang et al., 2008; Weishaupt et al.,

2010). Similar to development, changes in gene expression

and cellular activity status during aging are subject tomodulation

by epigenetic modifications, as an organism essentially has the

same genomic sequences in young and old ages. However,

other than the NAD-dependent histone deacetylase Sir2 and

its mammalian homolog SIRT1 gene’s regulation on longevity

(Dang et al., 2009; Guarente and Picard, 2005; Oberdoerffer

et al., 2008) and the recent finding of high levels of germline

histone H3 lysine 4 trimethylation (H3K4me3) being detrimental

toC. elegans life span (Greer et al., 2010), there is scant evidence

demonstrating causality of epigenetic regulations on aging. The

premature aging disease Hutchinson-Gilford Progeria Syndrome

(HGPS) has been reported to be associated with loss of histone

H3 trimethylation on lysine 27 (H3K27me3). In cells from a female

HGPS patient, H3K27me3, a mark for gene inactivation, is lost
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on the inactive X chromosome (Xi). The methyltransferase

responsible for generating this mark, EZH2, is also downregu-

lated (Shumaker et al., 2006). The level of histone methylations

is controlled by the balance between histone methyltransferase

and demethylase activities (Martin and Zhang, 2005; Shi,

2007). In mammals, two genes UTX/KDM6A and JMJD3/

KDM6B have been identified as demethylases for H3K27me3

(Agger et al., 2007; Hong et al., 2007). By removing the transcrip-

tionally repressive H3K27me3mark, UTX and JMJD3 can antag-

onize transcriptional repression exerted by Polycomb repressor

complexes, which are critical regulators of development in

response to external or internal cues (De Santa et al., 2007;

Lee et al., 2007; Swigut and Wysocka, 2007).

The C. elegans UTX-1 contains tetratricopeptide repeats (Tpr)

and JmjC domains and is orthologous to the mammalian UTX

(Swigut and Wysocka, 2007). There are three other UTX-1 paral-

ogs in C. elegans F18E9.5, C29F7.6, and F23D12.5, which all

contain only a JmjC domain, but no Tpr domain, indicating that

they are more related to human JMJD3 than to UTX.

In spite of the rapid progress in finding molecular interactions

for UTX, the discovery of its biological function is just beginning.

The zebrafish utx gene has been shown to be required for poste-

rior development in zebrafish through targeting the Hox genes

(Lan et al., 2007). At the cellular level, UTX is involved in RB-

dependent cell-cycle control (Wang et al., 2010). In C. elegans,

no biological functions have been described for utx-1, although

a mutation in an utx-1 paralog F18E9.5, a C. elegans ortholog

of the human JMJD3 gene, has been shown to result in abnormal

gonad development (Agger et al., 2007).

Here, we show that theC. elegans utx-1 gene is an aging regu-

lator by modulating the epigenetic and expression status of the

IIS pathway genes. RNA interference (RNAi) of the utx-1 gene

extended the mean life span of C. elegans by �30%. This effect

was dependent on the DAF-16 activity. The longer-than-normal

life span of daf-2 mutants cannot be further extended by utx-1

RNAi. The daf-2/Igf1r gene and its downstream genes were all

downregulated by utx-1 RNAi, resulting in increased nuclear

accumulation of DAF-16. We observed a sharp increase of

utx-1 expression during aging, which preceded the increase in

daf-2 expression and mortality rate. We further show that utx-1

RNAi significantly increased the H3K27me3 modification on

the daf-2 gene and that H3K27me3 on daf-2 is significantly

reduced in aged versus young worms. Similar age-dependent

changes were also observed in rhesus macaque muscles and

brain samples. Our findings suggest that downregulation of

UTX-1 keeps the IIS pathway at a ‘‘younger’’ epigenetic state

with high H3K27me3 modifications to delay the normal aging

process, an aging regulatory mechanism that might be con-

served from invertebrate to mammals.

RESULTS

Gene Expression of utx-1 Changes during Aging
Given the hints from H3K27me3 changes in the progeria

disease HGPS, we examined whether the expression levels of

the H3K27me3 methyltransferase and demethylases change

during normal aging using published human brain gene expres-

sion profiles measured by microarrays (Lu et al., 2004). The

H3K27me3 methyltransferase EZH2 displayed a marginally
162 Cell Metabolism 14, 161–172, August 3, 2011 ª2011 Elsevier Inc
significant decrease (Student’s t test, p = 0.101 or 0.044 with

or without outliers), while the H3K27me3 demethylase JMJD3

display no significant age-dependent expression changes

(p = 0.375 or 0.22 for JMJD3with or without outliers). In contrast,

the expression level of the other H3K27me3 demethylase UTX

increases significantly in old age (Figure 1A and Figure S1 avail-

able online, p = 0.004 or 0.00011 with or without outliers).

We then confirmed the age-dependent change of the utx-1

gene in C. elegans by real-time quantitative PCR (qPCR). The

expression of utx-1 showed a clear bimodal pattern. During

young adulthood (day 0 to day 5), the utx-1 expression level

was very low, then after day 7 of adulthood the level dramatically

increased, and steadily increased to a higher level by day 15 (Fig-

ure 1B). Interestingly, the sharp increase of the utx-1 expression

level immediately precedes the beginning of the increase in

mortality (Figures 1B and 1C). In comparison, the other utx-1

paralogs, F18E9.5, C29F7.6, and F23D12.5, did not showpersis-

tent expression increase in aging worms (Figure 1B). We there-

fore hypothesized that downregulating the UTX-1 activity might

delay the aging process.

Downregulation of utx-1 Increased Life Span
in C. elegans

When worms were fed from L1 and onward bacteria containing

double-stranded RNA (dsRNA) against utx-1 or an empty dsRNA

vector as control, the utx-1 RNAi extended the mean life span

by �30% compared to worms fed with vector RNAi bacteria

(Figure 1C and Table S1). Meanwhile, there was no significant

abnormal phenotype in development, including maturation

time, egg laying, body length, and male tail development (data

not shown), which indicates that the life span extension was

mainly caused by delaying aging rather than development

abnormalities. To rule out off-target effects, although there

is little such possibility given that long dsRNA sequences

are required for effectively knocking down gene activity in

C. elegans, we first confirmed that the RNAi specifically targeted

utx-1 instead of its paralogs (Figure S1C), then we also gener-

ated another RNAi construct targeting a region of utx-1 that is

nonoverlapping with the first construct and obtained similar

results in a life span assay (Figure 1C, RNAi #2). This second

RNAi construct did not knock down the utx-1 gene as much as

the original RNAi construct from the Ahringher library (Figure 1C,

right panel); it is therefore not surprising that its life span exten-

sion was not as much as with RNAi #1 (Figure 1C). RNAi of an

H3K4 methyltansferase complex gene ash-2 has been found to

increase life span under no-FUdR conditions (Greer et al.,

2010). Under such conditions, the life span extensions in wild-

type N2 worms by utx-1 RNAi is comparable to that by ash-2

RNAi (Figure 1D and Table S1). To further confirm this result,

we also examined the life span of a heterozygous utx-1 deletion

mutant. Because utx-1 homozygous mutant is lethal, we gener-

ated utx-1 heterozygote tm3118/+ balanced by AF1 (+/szT1[lon-

2(e678)] I; dpy-8(e1321) unc-3(e151)/szT1 X). Consistent with

the life span extension by utx-1 RNAi, utx-1 heterozygote

tm3118/+ also displayed increased mean and maximum life

span compared to its parental AF1 strain (Figure 1E). Another

utx-1 heterozygous mutant ok3553 also displayed significant

life span extension compared with its parental strain (Figure 1E

and Table S2).
.
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Figure 1. UTX-1 Regulates C. elegans

Life Span

(A)Averageexpression levelsofEZH2,JMJD3, and

UTX in the young and old human brains. Expres-

sion values were extracted from a microarray data

set. The young group contains ten samples from

ages 26 to 44 years, and the old group contains 20

samples from 45 to 106 years according to the

observations in Lu et al. (2004). Use of different

groupings identified by unsupervised hierarchical

clustering gives similar results (Figure S1). An error

bar of a group indicates the standard deviation

(SD) within the group. ** indicates Student’s t test

p < 0.01, while * indicates p < 0.05.

(B) The expression levels of utx-1 and its three

paralogs, F18E9.5, C29F7.6, and F23D12.5,

during C. elegans aging. Real-time qPCR quanti-

fication of utx-1 cDNA was done at day 0, 3, 7, 11,

and 15 of adulthood. Error bars represent the SD

of three independent replicates. b-actin mRNA

level was used as an internal control.

(C) utx-1 RNAi increased life span in wild-type N2

worms. Bacteria containingRNAi #1 constructwas

picked from the Ahrigher RNAi library; #2 was

constructed by us, and shares no overlap with #1.

Their RNAi efficiencies were determined by qPCR

andshown in the right panel. Error bars indicate the

standard error of mean (SEM) of three repeats.

b-actinmRNA levelwasusedasan internal control.

The mean life span and SD are listed in Table S1.

(D) Life span curves of utx-1 or ash-2 RNAi in N2

worms without FUdR. The mean life span and SD

are listed in Table S1.

(E) utx-1 heterozygote tm3118/+ or ok3553/+ had

extended life span compared to its parental strain

AF1. Log-rank test, p = 1.13E-05 and 3.59E-12,

respectively. Insets show relative expression level

of utx-1 in utx-1 heterozygote tm3118/+ or

ok3553/+ compared with its balancer strain AF1

as quantified by qPCR. Error bars indicate the

SEM of three repeats. b-actin mRNA level was

used as an internal control. Statistics are pre-

sented in Table S2.

See also Figure S1 and Tables S1–S3.
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InC. elegans, there are three other genes homologous to UTX-

1 that may also be responsible for H3K27me3 demethylation,

F18E9.5, C29F7.6, and F23D12.5, all of which are orthologous

to the human JMJD3 rather than UTX protein. We asked whether

these UTX-1 paralogs have the same effect on life span.C29F7.6

and F23D12.5 RNAi also slightly extended life span, but not as

strong as utx-1(D2021.1) RNAi (Figure S1D and Table S3). On

the contrary, F18E9.5 (the best match to human JMJD3) RNAi

shortened life span in N2 worms, which might be related to its

requirement in gonadal development (Agger et al., 2007). These

results indicate that H3K27me3 indeed might be a regulatory

event for aging; however, the differential effect of different

H3K27me3 demethylases implicates that their target genes are

at least partially different (Swigut and Wysocka, 2007).

UTX-1 Is Involved in Heat, UV, and Oxidative Stress
Response Regulation
Increased longevity has been known to correlate with tolerance

to multiple stresses, such as heat, ultraviolet (UV) light and
Cel
oxidative stresses (Hsu et al., 2003; Lee et al., 2003; Murphy

et al., 2003). We therefore tested whether utx-1 knockdown

worms are more resistant to these stresses. Compared to

worms fed with empty vector RNAi bacteria, utx-1 RNAi did

make worms more resistant to 35�C heat shock, UV, and para-

quat treatments, which represent heat, DNA damage, and oxida-

tive stresses, respectively (Figure 2 and Table S4). Similar

increases in heat and UV stress resistance were also observed

for utx-1 heterozygote tm3118/+ (Figure S2A and Table S4).

These demonstrate that lowered utx-1 expression resulted in

higher stress resistance. In addition, since these stress resis-

tances are tightly coupled to life span regulation through the IIS

pathway (Dillin et al., 2002; Finkel and Holbrook, 2000; Lithgow

et al., 1995; Murakami and Johnson, 1996), this result also impli-

cates that utx-1 might regulate aging through the IIS pathway.

We also confirmed that the life span extension induced by utx-1

RNAi was not caused by affecting amphid neurons (Figure S2B).

Out of 45 control and 50 utx-1 RNAi worms examined, none of

them had any defects in amphid neurons or the Dyf phenotype.
l Metabolism 14, 161–172, August 3, 2011 ª2011 Elsevier Inc. 163
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BA Figure 2. Reduced utx-1 Level Enhanced

C. elegans Resistance to Heat, UV, and Oxidative

Stresses

Survival curves of wild-type N2 worms fed bacteria

containing dsRNA of utx-1 or empty vector from L1 stage

and onward subjected to heat (A), DNA damage (B), or

oxidative stress (C). For heat treatment, animals were

shifted to 35�C on day 3 of adulthood (log-rank test on the

Kaplan-Meier curves, p = 6.86E-05 and 2.8E-04 for utx-1

RNAi #1 and #2, respectively). For DNA damage treat-

ment, animals were exposed to 1200J/m2 UV on day 3 of

adulthood (p = 0.00106 and 0.00235 for utx-1 RNAi #1 and

#2). For oxidative stress treatment, animals were dipped

into 100 mM paraquat on day 3 of adulthood (p = 0.05 and

0.002 for utx-1 RNAi #1 and #2). See also Figure S2 and

Table S4.
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Life Span Extension by utx-1 RNAi Is Dependent
on daf-16 Activity and IIS Pathway
Both longevity and stress tolerance are known to be promoted

by the forkhead transcription factor DAF-16 and suppressed

by its upstream IIS pathway genes, such as the insulin-like

growth factor receptor daf-2. The daf-2(e1370) mutant worms

have an extended life span, while daf-16(mu86) mutant animals

have a very short life span. To investigate the functional connec-

tion between utx-1 and genes in the IIS pathway, we examined

the life span changes upon knockdown of utx-1 in daf-2(e1370)

and daf-16(mu86) mutants. While utx-1 RNAi effectively

extended the life span of wild-type N2 strain, such an effect

could not be observed in any mutant on IIS pathway (Figures

3A–3F and Table S5); utx-1 RNAi could not further increase the

life span of daf-2(e1370) worms (Figure 3A) and could not at all

increase the life span indaf-16(mu86)mutant animals (Figure 3B).

These results indicate that the utx-1 RNAi-induced longevity

is dependent on daf-16 activity and that utx-1 acts in the same

pathway as daf-2. Further confirming that utx-1 functions in

this pathway, the life span extension by utx-1 RNAi was also

abolished in three other mutants akt-1(ok525), akt-2(ok393),

sgk-1(ok538), which are defective in the IIS pathway (Figures

3C–3E).

As daf-2 RNAi extends life span in a germline-independent

manner (Arantes-Oliveira et al., 2003), we tested whether utx-1

directly acts in the soma as opposed to the germline by selec-

tively knocking down utx-1 in germ cells in rrf-1(ok589) mutant,

where RNAi does not work in somatic cells but works effectively

in germ cells. RNAi of utx-1 could not extend the life span of

rrf-1(ok589) worms, while ash-2 RNAi could (Figure 3G). In

contrast, utx-1 RNAi can still further extend life span of the

germline lacking glp-1(e2141) mutant (Figure 3H). These results
164 Cell Metabolism 14, 161–172, August 3, 2011 ª2011 Elsevier Inc.
indicate UTX-1’s modulation of life span is inde-

pendent of the germline, but instead acts

directly in the soma.

To further verify the connection between utx-1

and the IIS pathway by other phenotypes,

we compared the stress resistance of daf-

16(mu86) mutant worms upon utx-1 RNAi with

the same strain treated with empty vector.

Consistent with the requirement of daf-16 for

utx-1 RNAi-induced life span extension, no
survival rate difference between utx-1 and vector RNAi in daf-

16(mu86) worms was observed under heat, UV, or paraquat

treatment (Figure S2C and Table S4), indicating that daf-16 is

also required for utx-1 RNAi induced stress resistances.

Together, these results demonstrate that utx-1 regulates life

span and stress tolerance through the IIS pathway.

DAF-2 expresses mainly in intestine, nervous system and

head neurons (McKay et al., 2003). We therefore examined

whether UTX-1 also expresses in these tissues by using a GFP

construct driven by the utx-1 promoter (Putx-1::gfp). Broad

expression in tissues including the IIS targeting tissues was

found for this reporter (Figure 4A). Moreover, we examined the

colocalization of utx-1 and daf-2 in a strain coexpressing Putx-

1::gfp and daf-2 promoter-driven mCherry (Pdaf-2::mCherry),

which represents the DAF-2 expression patterns. As expected,

the expression pattern of these two genes merged well, espe-

cially in the intestine (Figure 4B). The colocalization of daf-2

and utx-1 gene expression is consistent with its functional inter-

action with the IIS pathway.

UTX-1 Regulates IIS Gene Expression
As UTX-1 is a putative H3K27me3 demethylase that can remove

this repressive epigenetic mark and activate gene expression,

we asked whether UTX-1 regulates the gene expression of

the IIS pathway genes. We performed qPCR to detect the

expression level of IIS genes in wild-type N2 worms treated

with utx-1 or empty vector RNAi, using a housekeeping gene

b-actin as an internal control. The transcript levels of daf-2,

age-1, akt-1, akt-2, and sgk-1, all of which are upstream of

daf-16 and negatively regulate DAF-16 nuclear translocation,

were all decreased in utx-1 RNAi animals compared with vector

RNAi (Figure 5A, primers in Table S7). A similar direction of
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Figure 3. Longevity Regulation by utx-1 Is Dependent on daf-16 Activity and Acts through the IIS Pathway

(A–F) Survival curves of IIS pathway mutant daf-2(e1370) (A), daf-16(mu86) (B), akt-1(ok525) (C), akt-2 (ok393) (D), sgk-1(ok538) (E), and wild-type N2 worms (F),

with vector or utx-1 RNAi. The mean life span of daf-2(e1370)with utx-1 RNAi was not longer, but shorter than that with vector RNAi (p = 1.22E-07). The mean life

span daf-16(mu86)with utx-1 RNAi was indistinguishable from that of vector RNAi, p = 0.59; so are akt-1(ok525)with utx-1RNAi versus with vector RNAi p = 0.65;

akt-2(ok393) with utx-1 RNAi versus with vector RNAi, p = 0.73; sgk-1(ok538) with utx-1 RNAi versus vector RNAi, p = 0.67. Statistics are presented in Table S5.

(G) Life span extension by utx-1RNAi is abolished in rrf-1(ok589)mutant, where RNAi does not work in somatic cells. RNAi of utx-1 could not extend the life span of

rrf-1(ok589). As a positive control, ash-2 RNAi extended life span of rrf-1(ok589) worms. This experiment was done in the no-FUdR condition. Statistics are

presented in Table S6. RNAi of utx-1 could not increase life span in rrf-1(ok589) in +FUdR condition either (Table S5).

(H) utx-1 RNAi increased life span in germline-defective mutant glp-1(e2141). Statistics are presented in Table S5. All the experiments on N2 were done at 20�C,
while experiments on glp-1(ts) were shifted to 25�C at the L1 stage.

See also Tables S5 and S6.
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expression changes was observed in utx-1 heterozygote

tm3118/+ versus its balancer strain AF1 for most (including

daf-2, akt-1, and akt-2) but not all IIS genes (Figure S3A). Mean-

while, the messenger RNA (mRNA) level of the sir-2.1 gene,

which affects aging by regulating daf-16 in parallel to IIS pathway

(Berdichevsky et al., 2006), was not altered by utx-1 RNAi (Fig-

ure 5A), implying no direct regulation of utx-1 on sir-2.1.

The overall transcript level of daf-16 was also slightly reduced

by utx-1 RNAi, implying that utx-1 may also regulate the tran-

script level of daf-16. However, the activity of daf-16 depends

on the amount of nuclear DAF-16 protein level. We therefore

examined if utx-1 RNAi could promote DAF-16 nuclear translo-

cation. We performed utx-1 RNAi in the TJ356 strain, which

expresses a functional DAF-16::GFP fusion protein, using daf-2

and empty vector RNAi as positive and negative controls,
Cel
respectively. Worms in each RNAi experiment were classified

into four categories based on DAF-16 subcellular localization:

(1) nuclear, (2) mostly nuclear, (3) mostly cytoplasmic, and (4)

cytoplasmic (Figure 5B). The percentage of worms in each cate-

gory was then counted. In line with the phenotypes we observed,

DAF-16::GFP displayedmore frequent nuclear localization under

utx-1 RNAi compared to the vector RNAi, where DAF-16

had no exclusive nuclear accumulation (Figure 5B). To further

confirm that DAF-16 transcription activity is increased by utx-1

RNAi, we did qPCR to detect the expression levels of two known

DAF-16 target genes, sod-3 and daf-15, which are positively and

negatively regulated by DAF-16, respectively (Jia et al., 2004; Oh

et al., 2006). Consistent with the DAF-16 nuclear localization

patterns (Figure 5B), sod-3 increased and daf-15 decreased in

mRNA levels when utx-1 was knocked down (Figure 5C), further
l Metabolism 14, 161–172, August 3, 2011 ª2011 Elsevier Inc. 165



Putx-1::gfp Pdaf-2::mCherry merge

utx-1 expression pattern (Putx-1::gfp)

B

A

N NN

N
M

II

T

EE
E

I

P
N NN

N
M

II

G T

EE
E

E

I

P

Figure 4. Ubiquitous Expression of utx-1 At Least Partially Colocal-

izes with daf-2 at Tissue Level

(A) GFP expression driven by utx-1 promoter (Putx-1::gfp) displays high

intensities in neurons (N), intestine (I), embryo (E), and pharynx (P), relative low

intensities in muscle (M), germline (G), and tail (T). The scale bar represents

20 mm.

(B) Putx-1::gfp (green) and Pdaf-2::mCherry (red) marked utx-1 and daf-2

expressions are colocalized in at least some neurons and intestine. The scale

bar represents 20 mm.
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demonstrating utx-1 RNAi’s induction of DAF-16 activity. There-

fore, the changes of IIS gene expressions and DAF-16 activity

are consistent with the results of genetic epistasis analysis,

and further confirmed the IIS pathway as the mediator for the

life span regulation by utx-1.

The utx-1 orthologs in human and zebrafish have been shown

to regulate Hox gene expression (Agger et al., 2007; Lan et al.,

2007). We therefore tested two of the six C. elegans Hox genes

mab-5 and lin-39, and found that their expression levels did

not change significantly upon utx-1 RNAi (Figure S3B). Consis-

tently, we did not observe male tail defects associated with

mab-5 mutation or multi-vulva phenotype associated with

lin-39 (data not shown). This indicates that not all Hox genes

are conserved utx-1 targets in C. elegans as examined under

partial loss of function of utx-1.

Changes of Expression of the IIS Genes during Aging
Next, we asked whether utx-1’s regulation of IIS pathway is

manifested during aging by changes in their gene expression

levels. Amazingly, the level of daf-2 increased dramatically, while

age-1, akt-1 and daf-16 only showed very modest increases

during aging (Figure 5D). This indicates that daf-2 might be the
166 Cell Metabolism 14, 161–172, August 3, 2011 ª2011 Elsevier Inc
primary target of utx-1 during aging for life span regulation.

The increase in gene expression of daf-2 apparently lagged

behind the increase of utx-1 during the aging time course (Fig-

ure S3C), consistent with utx-1 increase being causal to daf-2

increase. Further confirming this, during the time course of

utx-1 RNAi the utx-1mRNA level decreased early in L2, whereas

the daf-2 mRNA level decrease lagged behind utx-1 (Figure 5E).

In these experiments, we also used tubulin as another internal

control, the results are essentially the same as using actin as

control, and actin level did not change upon utx-1 RNAi, at least

against tubulin (Figure S3D).

UTX-1 Regulates daf-2 Transcription by H3K27me3
Modification
As the human UTX protein can regulate the H3K27me3 level on

its target genes (Lan et al., 2007), we hypothesized that utx-1’s

transcriptional regulation of the IIS genes might be through its

demethylation of the H3K27me3 marks on the IIS genes, in

particular the major responder daf-2 (Figures 5A and 5E). Using

recombinant JmjC domain of C. elegans UTX-1, we verified that

UTX-1 has demethylase activity. Incubating the wild-type JmjC

domain with histones in an in vitro demethyation buffer reduced

the level of H3K27me3 and H3K27me2 while increasing the level

of H3K27me1 on histones (Figure 6A). The reaction was depen-

dent on JmjC demethylase cofactors Fe2+, a-ketoglutarate

(a-KG), or ascorbate (Figure S4A). In contrast, UTX-1 did not

demethylate H3K9me3 or H3K9me2 (Figure S4B). Also consis-

tent with UTX-1 being an H3K27me3 demethylase in vivo, we

observed an increase in the overall level of endogenous

H3K27me3 in both young and aged utx-1 RNAi worms

compared with those in the same age vector-RNAi worms (Fig-

ure 6B). A similar increase in H3K27me3 can be observed in

the utx-1 heterozygous mutant tm3118+/� (Figure 6B). Then

we performed H3K27me3 chromatin immunoprecipitation

(ChIP)-qPCR to monitor the H3K27me3 levels changes in the

daf-2 gene in response to utx-1 RNAi and between old and

young worms. If UTX-1 demethylates H3K27me3 on the daf-2

gene, downregulation of utx-1 will cause a higher H3K27me3

level on the gene. The H3K27me3 levels along the daf-2 locus

as measured by fold enrichment over IgG normalized to input

DNA decreased in the old worms compared with the young

worms (Student’s t test, p < 0.01 for all groups; Figure 6C,

primers in Table S7). Additionally, the level of H3K27me3 was

significantly increased by utx-1RNAi in the old worms (Student’s

t test p < 0.05 for all groups), whereas in young worms a small

specific increase in H3K27me3 near the 50 end of the daf-2

gene was observed, but not in the far upstream or in an exon

(Figure 6C). In line with the H3K27me3 changes, in samples

processed in parallel, RNAi of utx-1 partially repressed aging-

dependent daf-2 mRNA increase, further supporting the utx-1

effect on daf-2 (Figure S3C). Similar increases in H3K27me3 on

the daf-2 locus were observed by comparing utx-1 heterozygote

tm3118/+ with its parental AF1 strain (Figure S4C).

The age-dependent decrease in H3K27me3 and its restoration

by utx-1 RNAi in the daf-2 locus was consistent with observable

significant changes genome-wide in the same pattern in

promoter regions (in particular within 1Kb upstream of transcrip-

tion start sites [TSSs]), as manifested by the ChIP-seq (ChIP fol-

lowed by Illumina GAII deep sequencing) profiles (Figure S4D).
.
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Figure 5. UTX-1 Regulates IIS Gene Expression and DAF-16 Translocation

(A) Expression level changes of IIS and sir-2.1 upon utx-1 RNAi. The mRNA levels of the indicated genes were measured on total RNA isolated from synchronized

day 3 adult worms by qPCR. Gene expression levels were linearly scaled against the mean in the control vector RNAi worms. b-actin mRNA level was used as an

internal control. Error bars represent the SEM of three repeats.

(B) RNAi of utx-1 promoted DAF-16 translocation into nucleus. With daf-2 RNAi as positive control, a total of 221, 162, and 209 worms were scored for DAF-

16::GFP subcellular localization in DAF-16::GFP transgenic worms TJ356 upon daf-2, utx-1 or vector RNAi. Scoring and counting of the subcellular distribution

were done double blindly by three people. Typical DAF-16::GFP images for each category are shown in the lower panel.

(C) Expression level changes of typical targets of daf-16, sod-3 and daf-15, known to be positively and negatively regulated by DAF-16, respectively. Expression

level changes were measured at adult day 3 by qPCRwith b-actin used as an internal control and were linearly scaled against the mean in the control vector RNAi

worms. Error bars represent the SEM of three repeats.

(D) Changes of IIS genes expression during aging. The transcript levels were quantified by qPCR and expressed as the fold change relative to the expression

levels in day 0 of adulthood. The whiskers represent the SEM among three replicates.

(E) Transcript levels of utx-1 and daf-2 in L2, day 0, and day 3 young adults during the time course of utx-1RNAi from L1 and onward in TJ356 strain. The transcript

levels are scaled relative to each gene’s expression level in the control vector RNAi worms at the same time point. Error bars represent the SEM of three repeats.

See also Figure S3 and Table S7.
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Through ChIP-seq, we also found that besides daf-2, akt-1 and

akt-2 also displayed an utx-1 RNAi dependent increase of

H3K27me3 in their promoter regions in old worms, whereas
Cel
age-1, sgk-1 or sir-2.1 did not. In addition, consistent with

a lack of transcriptional change upon utx-1 RNAi, lin-39 and

mab-5 do not seem to be targets of utx-1 as their H3K27me3
l Metabolism 14, 161–172, August 3, 2011 ª2011 Elsevier Inc. 167
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Figure 6. UTX-1 Regulates H3K27me3 Level on daf-2/Igf1r during Aging

(A) The GST::UTX-1 JmjC catalytic domain fusion protein catalyzed the demethylation of H3K27me2/3, but not H3K27me1 in vitro. Fusion protein (1 mg) was

incubated with histone and demethylation buffer for 3 hr.

(B) Increase in cellular H3K27me3 level upon utx-1 RNAi in both L3 and adult day 10 worms compared with control vector RNAi worms at the same stages, or in

the utx-1 heterozygous mutant tm3118+/� compared with its parental AF1 strain. RNAi was started from L1.

(C) H3K27me3 level determined by ChIP-qPCR on the daf-2 gene. H3K27me3 levels were expressed as the fold enrichment over IgG normalized by the input

DNA in each sample for day 3 young-adult vector and utx-1 RNAi and day 10 old-adult vector and utx-1 RNAi. All RNAi started from L1 stage. Error bars represent

the SD. Primer sequences for qPCR are listed in Table S7.

(D) Knockdown of Utx in mouse 3T3-L1 cells lowers Igf1r transcript level. Expression levels of IIS genes quantified by qPCR in 3T3-L1 cells transfected with

a construct containing shRNA compared to the same genes’ expression level in empty vector-transfected control cells. b-actin mRNA level was used as an

internal control. Error bars represent the SEM of three repeats.
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level in the utx-1 RNAi worms did not increase compared to that

of vector RNAi (Figure S4E).

UTX-1 Regulation of IIS and Life Span Is Likely
to Be Conserved in Mammals
Finally, we examined whether the UTX-1 regulation on IIS and life

span uncovered inC. elegans is relevant to mammalian systems,

as both UTX and IIS are highly conserved from invertebrates to

mammals. When the endogenous Utx expression level in 3T3-

L1 cells was downregulated by the short hairpin RNA (shRNA)

specifically targeting the Utx gene, a remarkable decrease of

Igf1r expression level was detected by qPCR (Figure 6D, primers

in Table S7). Similar decreases were also observed for IIS down-

stream genes exactly as we observed for the C. elegans IIS

genes (Figure 5A). These results indicate that utx-1 regulation

of the IIS pathway is conserved between C. elegans and mouse.

In H3K27me3 ChIP-qPCR experiments, as expected,

H3K27me3 modification levels along Igf1r displayed a 3 to 7

fold increase afterUtxRNAi as detected by three different primer

sets (Figure 6E, primers in Table S7).

To examine whether UTX demethylase activity is also relevant

to the mammalian aging process, we examined the level of

H3K27me3 modification on IGF1R during aging by ChIP-qPCR

with macaque muscle samples. Based on the syntenic regions

corresponding to the most sensitive primer set we found for

mouse Igf1r (Figure 6E), we indeed found a significant age-

dependent decrease of H3K27me3 relative to the level in input

DNA in each sample (Figure 6F, primers in Table S7; Student’s

t test, p = 0.000153). A similar age-associated decrease was

observed by ChIP-seq on the IGF1R gene in macaque brains

(J.-D.J.H., unpublished data, and Figure S4F).

DISCUSSION

Our data suggest a model (Figure 6G) in which UTX-1 is a tran-

scription regulator of the IIS pathway through epigenetically

regulating its gene expression levels. In this model, UTX-1/UTX

functions as a demethylase that is capable of removing the

gene expression repressive mark H3K27me3 on the IIS pathway

genes, in particular the daf-2/Igf1r gene. Its increase at midlife of

adult life span activates the IIS, ultimately reducing the FOXO/

DAF-16 protein level in the nucleus, which results in decreased

cellular maintenance functions and an aging-related decline in

cellular functions. Reduction of the UTX-1 activity, currently by

RNAi and mutagenesis and hopefully in the future by small

molecular drugs, can reverse this adverse effect of age-depen-

dent increase in UTX activity, thereby reestablishing a more
(E) H3K27me3 modification level determined by ChIP-qPCR in 3T3-L1 cells trans

expressed as percentage of the qPCR signal on total input DNA. Error bars repre

Table S7.

(F) H3K27me3 modification levels in the second intron of the IGF1R gene in thre

macaque muscle samples as determined by ChIP-qPCR. Primers used correspo

percentage over the corresponding input DNA from each sample. Error bars repres

and old groups was determined by the Student’s t test. ** indicates p < 0.001.

(G) A model for histone demethylase utx-1 regulating life span by targeting IGF

activating the insulin-like signal receptor DAF-2 transcription by decreasing the H

ultimately prevents DAF-16 translocation from cytoplasm to nucleus. This in turn l

utx-1 can block such a negative effect of utx-1 on longevity by resetting a ‘‘youn

See also Figure S4 and Table S7.

Cel
‘‘naı̈ve’’ or ‘‘younger’’ epigenetic status of the IIS pathway which

eventually delays (or might also reverse) the aging process. This

model is supported by five major findings: (1) The expression of

human UTX and its worm homolog increased in the human brain

and C. elegans during the aging process. Its sharp midlife

increase in C. elegans precedes the dramatic elevation of daf-2

expression and the increase in mortality. (2) utx-1 RNAi signifi-

cantly extended C. elegans life span in a manner dependent on

the key players of the IIS pathway, such as daf-2, akt-1, akt-2

and daf-16 activities. (3) utx-1 regulates the gene expression of

the IIS pathway, in particular DAF-16 nuclear translocation. (4)

UTX-1 protein regulates daf-2/Igf1r expression by acting as a

H3K27me3 demethylase. (5) In line with the increased daf-2

gene expression during aging, H3K27me3 on the daf-2/Igf1r

decreased dramatically in old animals (both worms and

monkeys).

RNAi of utx-1 during embryonic stage results in embryonic

lethality, thus utx-1 is required for early development as is the

IIS pathway. We did not observe any obvious postembryonic

phenotypes other than life span extension, as found previously

(Agger et al., 2007). So far, only one screen attempted to tackle

the 2700 essential genes postdevelopmentally (Curran and Ruv-

kun, 2007). It is not known whether utx-1 was included in the

2700 gene list or lost during the screen. Modeled after Curran

et al.’s study, we carried out utx-1 RNAi at the postembryonic

developmental stage.

Interestingly, the H3K27me3 decrease with age can be also

observed at genome-wide level in promoter regions, and can

be restored by utx-1 RNAi (Figure S4D), indicating a global

downregulation of H3K27me3 at many gene loci might result

from the increased utx-1 expression in old worms. Therefore,

utx-1 might not specifically target IIS genes, but instead, IIS

genes serve as sensors for the global epigenetic status change

and tune downstream cell growth and stress resistance func-

tions accordingly.

Given the tight association of aging with nearly all complex

human diseases, delaying the aging process might also delay

the onset of these complex diseases. Our findings revealed an

epigenetic regulation on aging, which to our knowledge is the

first report of a histone methylation-modifying gene participating

in normal aging regulation in adult somatic tissue. Previously, the

ASH-2 complex, which trimethylates H3K4, was identified as an

aging regulator that acted in germline (Greer et al., 2010). Such

an indirect life span regulation on the soma has not been shown

to be conserved in mammals. The only somatic tissue epigenetic

regulator of aging discovered is the Sir2 gene. Different from

the well-known Sir2 histone deacetylase (Dang et al., 2009;
fected with empty vector or constructs containing shRNA. The qPCR signal is

sent the SEM of three repeats. The sequences of the primers are presented in

e young (9, 10, and 11 year old) and three old (20, 21, and 22 year old) male

nd to the ‘‘intron’’ site listed in Table S7. The qPCR signal is expressed as the

ent the SEMof three repeats. The significance of the difference between young

-1 pathway. UTX-1 as an H3K27me2/3 demethylase increases during aging,

3K27me3 silencing mark on the gene and also its downstream genes, which

eads to decreased longevity and stress resistance of the animals. RNAi against

ger’’ epigenetic status of the IIS pathway.
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Guarente and Picard, 2005; Oberdoerffer et al., 2008) that plays

an important role in genome stability, UTX-1, similar to its target

IIS pathway, is an important development regulator. Aging can

be seen as a special, late developmental stage that, unlike early

development, is not directly under reproductive or evolutionary

selection pressure (Kirkwood, 2005). During early development

and aging, the genomes of individual cells remain largely the

same. Changes in the transcriptome can be memorized by the

cells or even passed on to the next generation of cells through

epigenetic modifications on the genomes. As erasing these

marks set up in the developmental stage can help reverse the

differentiated states to undifferentiated or even pluripotent

stem cell states (Boyer et al., 2006; Huangfu et al., 2008; Yama-

naka, 2009), it is tempting to speculate that reestablishing the

epigenetic marks erased by the aging process might also help

reverse the aging process.

EXPERIMENTAL PROCEDURES

C. elegans Strains

The strain tm3118 was a gift from Shohei Mitani. All other C. elegans

strains were obtained from the Caenorhabditis Genetics Center: CB1370,

daf-2(e1370) III; CF1038, daf-16(mu86) I; RB759, akt-1(ok525) V; VC204,

akt-2(ok393) X; VC345, sgk-1(ok538) X; RB798, rrf-1(ok589) I; CF1903,

glp-1(e2141) III; AF1, +/szT1[lon-2(e678)] I dpy-8(e1321) unc-3(e151)/szT1 X;

VC2862, +/szT1[lon-2(e678)] I; utx-1(ok3553)/szT1 X; TJ356, zls356 IV. Nema-

todes were cultured via standard methods (Brenner, 1974). utx-1 +/�, +/szT1

[lon-2(e678)] I utx-1(tm3118)/szT1 was obtained by crossing tm3118 with AF1.

Constructs for Worms

Constructs were done by standardmolecular techniques. Detailed procedures

and primers are described in the Supplemental Experimental Procedures.

Life Span Assay

Life span assay was done as described previously (Xue et al., 2007). In brief,

synchronized eggs grown to young adult stage were distributed to RNAi or

non-RNAi plates containing 20 mg/ml FUdR to prevent progeny growth. For

RNAi, bacteria clones were selected from Ahringer’s RNAi feeding bacteria

library (Kamath et al., 2003), and dsRNA expression was induced by 1 mM

IPTG. The same HT115 bacteria carrying the empty L4440 construct were

used as controls in all experiments. The worms were cultured at 20�C unless

specified and transferred to fresh RNAi plates every 4 days to ensure

continued efficacy of RNAi knockdown.Worms that crawled off were excluded

from the experiments. The number of dead worms was counted every other

day. All experiments were independently performed at least twice. The p value

was calculated by log-rank test on the Kaplan-Meier curves.

Stress Tolerance Assays

Synchronized L1 worms were grown on nematode growth medium plates with

or without RNAi. On day 3 of adult stage, for heat stress, the plates were

transferred to 35�C incubator, and the number of dead worms was counted

every 3 hr. For UV-resistant stress, plates were exposed to 1200 J/m2 UV

and then recovered at standard culture condition, and mortality was counted

every day. For paraquat stress, worms were transferred to 100 mM paraquat

(Sigma) in S-basal medium, and mortality was counted every other hour (Dillin

et al., 2002).

Expression and Purification of GST-JmjC Domain

of C. elegans UTX-1

To clone JmjC domain of UTX-1, primers cgcGGATCCGAGTATCAATCGG

AATCGTTCAAGCACAC and cgcGTCGACCTAGGCAGTGAAACTCATCTTAT

TGTTGTTAGCTG with BamHI and SalI digestion sites were used for PCR

the sequence encoding 802–1168 amino acid of UTX-1 fromN2worm comple-

mentary DNA (cDNA). The PCR product was inserted in to pGEX-4T-1 plasmid
170 Cell Metabolism 14, 161–172, August 3, 2011 ª2011 Elsevier Inc
with an N-terminal GST tag. GST-JmjC domain of UTX-1 was expressed in

Rosetta E. coli, and the protein was purified according to a standard protocol.

Demethylation Assay

Bulk calf thymus type II-A histone proteins (Sigma #H9250) were incubated

with the purified fusion protein of GST-JmjC domain of UTX-1 in demethylation

buffer [20 mM Tris-HCl pH 7.5, 150 mM NaCl, 50 mM (NH4)2Fe(SO4)2+6(H2O),

1 mM a-ketoglutarate, and 2 mM ascorbic acid] for 3 hr at 37�C. A total of 1 mg

fusion protein and 1 mg bulk histones were included in 20 ml reaction. The

reaction was stopped with SDS loading buffer, and western blot analysis

was performed.

H3K27me3 Western Blot from Worm Sample

Worms were grown synchronously to appropriate stages and washed with M9

buffer, boiled in loading buffer without bromophenol blue before measuring

total protein concentration. Five micrograms of total protein was loaded in a

15% SDS-PAGE. Anti-H3K27me3 1:3000, anti-H3 1:2000 antibodies (abcam)

were used for blotting.

Gene Expression Level Detected by Real-Time Quantitative PCR

Total RNA was isolated from worms with TRIzol reagent (Invitrogen). Reverse

transcriptase (TOYOBO) was used for oligo (dT) primed first-strand cDNA

synthesis. The qPCR analysis was carried out on an Mx3000P (Stratagene)

with EvaGreen dye (Biotium). The DDCt method was used to quantify the

amount of mRNA level relative to that of b-actin (Livak and Schmittgen,

2001). The oligonucleotides used for PCR are listed in Table S7.

DAF-16 Translocation Detection

Larva stage of TJ356 (zls356 IV) worms were cultured under standard RNAi

condition. One day later, the GFP immunofluorescence was observed under

microscope. Worms were divided into four categories according to the GFP

distribution: those with GFP in cytoplasm, most in cytoplasm, most in nucleus,

and in nucleus, as previously described (Padmanabhan et al., 2009). The

number of worms in each category was then counted for each RNAi group,

and finally the percentage of each category was scored by three experi-

menters independently not knowing the labels of the samples.

ChIP-qPCR, ChIP-Seq Data Generation and Analysis

Worms used for ChIP were cultured on plates with 103 condensed food;

young and old samples were collected on adult day 3 and 10, when nearly

all worms were still alive. ChIP in C. elegans was performed after crosslinking

in 1% formaldehyde for 20 min as described (Mukhopadhyay et al., 2008) with

a purified antibody. For additional information and ChIP-seq analysis and ChIP

of other samples, see the Supplemental Experimental Procedures.

Construct of shRNA against the Mouse Utx Gene

The shRNA construct againstUtx targeting GCCUAGCAAUUCAGUAACA was

used to insert into plasmid pll3.7. The plasmids were transfected into 3T3-L1

cells with the VigoFect transfection reagent, and cells were collected 48 hr

after transfection.

ACCESSION NUMBERS

Our C. elegans H3K27me3 ChIP-seq data have been deposited in the GEO

database under accession number GSE29896.
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four figures, and seven tables and can be found with this article online at
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