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Abstract 

Organism development is a systems level process. It has benefited greatly from the recent technological advances in the field of sys-
tems biology. DNA microarray, phenome, interactome and transcriptome mapping, the new generation of deep sequencing technologies,
and faster and better computational and modeling approaches have opened new frontiers for both systems biologists and developmental
biologists to reexamine the old developmental biology questions, such as pattern formation, and to tackle new problems, such as stem cell 
reprogramming. As showcased in the International Developmental Systems Biology Symposium organized by Chinese Academy of Sci-
ences, developmental systems biology is flourishing in many perspectives, from the evolution of developmental systems, to the underly-
ing genetic and molecular pathways and networks, to the genomic, epigenomic and noncoding levels, to the computational analysis and 
modeling. We believe that the field will continue to reap rewards into the future with these new approaches. 
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Introduction

The CAS International Symposium on Developmental 
Systems Biology (May 18 20, 2008, Beijing) was organ-
ized by the Institute of Genetics and Developmental Biol-
ogy and the Institute of Biophysics, the Chinese Academy 
of Sciences . It was supported by the Chinese Academy of 
Sciences (CAS), the National Science Foundation of China 
(NSFC), our partner the CAS Key Laboratory of Molecu-
lar Developmental Biology, and commercial sponsors, in 
particular IBM. 

The symposium covered a wide range of topics on sys-
tems and computational biology with an emphasis on or-
ganism development. The cutting-edge research and tech-
nology for Developmental Systems Biology presented by 
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many speakers fascinated the participants. Here we sum-
marize the talks into five topics and wish to share the ex-
citement with our readers. 

Evolution

Evolutionary selection acts at different levels in an or-
ganism. DNA evidence for evolution includes mutations 
and nucleotide similarities among species, while recent 
studies find that gene expression is also tuned during evo-
lution to control biological processes. Its effects can even 
be observed in complex gene networks at the systems 
level. 

Philipp Khaitovich (CAS-MPG Partner Institute for 
Computational Biology, China) presented an unpublished 
work on transcriptome evolution in primates. In develop-
ment, timing is crucial, and evolution often works by al-
tering the timing of various developmental processes. In 
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primate evolution, such a change can be observed in the 
timing of sexual maturation, which is obviously delayed in 
human relative to other primates. By analyzing mRNA 
expression in the brains of humans, chimpanzees and 
rhesus macaques, his group finds that delayed maturation 
is also evident at the gene expression level. 

Ralph Greenspan’s group (the Neurosciences Institute, 
USA) illustrated the flexibility of gene networks under 
different selection strategies (van Swinderen and Green-
span, 2005) in the evolution of fly behavior (Dierick and 
Greenspan, 2006; Weber et al., 2008). He demonstrated 
that gene interactions are rewired under different back-
grounds in fruitfly. Their findings have implications for the 
role of degeneracy and complexity in setting gene network 
states, which in turn may offer insights into evolutionary 
mechanisms. 

Co-evolution refers to reciprocal evolutionary change 
between interacting partners. It plays a critical role in 
driving interacting components to evolve. MicroRNAs 
may be the most active class of genes in the genome in 
evolutionary terms.   

Chung-I Wu’s group (University of Chicago, USA) 
finds that only a very small fraction of stem-loop struc-
tures that have emerged through evolution are actually 
functional and preserved, likely driven by selection (Lu et 
al., 2008a, 2008b). They find that the adaptation of a new 
miRNA to the transcriptome is a long process that involves 
many changes in miRNAs themselves. They also examine 
how miRNAs and their targets co-evolve and co-adapt 
during evolution. They hypothesize that co-adaptation may 
also be important for genetic buffering circuits, such as 
feedback and feed-forward loops, established by miRNAs 
and their targets to stabilize the transcriptome output. They 
carry out transgenic experiments on evolving miRNAs 
across species in Drosophila and find that the predicted 
targets of Drosophila melanogaster (Dm) miRNA Dm310 
tends to be expressed at a normal or elevated level when 
Dm310 is over-expressed in Dm. However, the target ex-
pression is repressed when the orthologous miRNA cluster 
in Drosophila pseudoobscura (Dp) Dp310 is over-expressed 
in Dm. They propose that Dp310 (but not Dm310) might 
disrupt the feedback or feed-forward loops in Dm and that 
co-adaptation between miRNAs and their targets may be 
important to maintain the stability of the transcriptome. 

Taijiao Jiang (Institute of Biophysics, CAS, China) 
presented a method based on a nucleotide co-occurrence 
network to understand human influenza evolution (Du et 
al., 2008). This network model effectively captures the 
antigenic evolutionary patterns of H3N2 virus and identi-
fies the genetic basis for human influenza epidemics. They 
find that many human influenza virus genomic mutations 
are not random, but instead participate in highly correlated 
networks of cooperative mutations and that correlated 
amino acid substitutions are preferentially located in the 

known antigenic regions of the viral hemagglutinin (HA). 
They also find a specific correlated amino acid substitution 
that may account for a recent human-avian infectivity 
shift.  

Evolutionary events can also be used to predict 
gene/protein interactions. Zhirong Sun (Tsinghua Univer-
sity, China) described a method for inferring functional 
associations between proteins from evolutionary events 
(such as gene loss, gene gain and horizontal transfer) dur-
ing speciation (Zhou et al., 2006). The profiles of evolu-
tionary events are constructed from phylogenetic profiles 
and a species tree. They find that this method has better 
prediction performance than one simply based on phy-
logenetic profiles (presence or absence of genes in differ-
ent species). The two methods can complement each other 
in predicting protein-protein interactions (PPIs). 

Developmental pathways and networks 

Pernille Rorth (Temasek Life Science Laboratory, 
Singapore) presented a fascinating work on cell migration 
and guidance mechanisms in Drosophila. They dissect 
signaling events in border cells, a cluster of about eight 
cells which perform a spatially and temporally controlled 
migration during Drosophila oogenesis. They find that a 
cell cluster uses two fundamentally different types of 
guidance signaling. One is already found in single-cell 
migrations, while a second mode revealed by their study is 
specific for the group of cells which harbor spatial infor-
mation and act as a collective (Bianco et al., 2007; Rorth, 
2007). Understanding such collective migratory behavior 
will be of great importance to cancer research, since cancer 
cells may metastasize in groups rather than as single cells. 

Nicholas Baker (Albert Einstein College of Medicine, 
USA) showed a good example of cell fate regulation in a 
dynamic model of Drosophila eye development. He and 
his collaborators do a quantitative analysis focusing on the 
activator-inhibitor system responsible for the regular spac-
ing of the R8 photoreceptors that define the eye’s om-
matidial pattern. A novel, non-Turing mechanism is found 
where R8 induction is determined by an intrinsically dy-
namic process involving long-range activation and 
short-range inhibition with the existing R8s acting as a 
template. This model predicts that R8 cells are defined 
before the appearance of the full group of proneural cells, 
and not selected by interactions between these cells. The 
model therefore provides insight into the selection of other 
neural cells by lateral inhibition. 

By high-throughput RNAi screen in C. elegans, Hui 
Ge’s group (Whitehead Institute for Biomedical Research, 
USA) focuses on the gene pleiotropic effect. They define 
pleiotropic genes by their “phenotypic signatures” and find 
that pleiotropy occurs extensively among genes involved 
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in early embryogenesis. In addition, they hypothesize that 
these genes are organized into partially overlapping func-
tional modules, with the pleiotropic genes as connectors 
between these modules (Zou et al., 2008). 

Stem cells are defined by the ability to self-renew and 
differentiate into mature somatic cell types. Sheng 
Zhong’s laboratory (University of Illinois at Ur-
bana-Champaign, USA) studied the conserved as well as 
distinct regulatory network components in human embry-
onle stem (hES) and mouse embryonic stem (mES) cells. 
They generated a time-course microarray dataset for dif-
ferentiating mES cells and compared it with several dif-
ferentiation datasets of hES cells. They demonstrated that a 
species-specific regulatory module is critical to maintain 
pluripotent phenotype in mES cells. They reported that 
two target genes, which are activated in mES cells by this 
regulatory module, are activated in hES cells by other tran-
scription factors. These data offer an example that the 
transcription network is rewired but the same transcrip-
tional output is maintained (Xie et al., 2008). 

By integrating protein-protein interaction (PPI) data and 
gene expression profiles during fruitfly and human brain 
aging, Jing-Dong Jackie Han’s group (Institute of Ge-
netics and Developmental Biology, CAS, China) finds two 
pairs of transcriptionally anti-correlated modules associ-
ated with two temporal switches of cellular functions, 
“proliferation to differentiation“ and “reductive metabolic 
to oxidative metabolic”. Network analysis and RNAi ex-
periments in C. elegans demonstrate that the genes con-
necting different modules in PPI networks seem to prefer-
entially affect network stability as well as aging and/or 
longevity (Xue et al., 2007). 

Using multiple types of network data, including expres-
sion profiling, PPIs, genetic interaction and phenotypic 
profiling in human and other model organisms, Marc 
Vidal’s group (CCSB, Dana-Farber Cancer Institute, USA) 
presented a network perspective on breast cancer. Novel 
genes are found to be associated with breast cancer by 
their network modeling strategy, and one of the novel pre-
dicted genes, HMMR, is experimentally validated (Pujana 
et al., 2007). They also use a drug-target network to char-
acterize the relationships between drug targets and disease 
genes, and open up novel insights into diseases and strate-
gies for selecting drug target genes (Yildirim et al., 2007). 
They recently developed a method to evaluate node re-
moval versus edge removal on the behaviors and proper-
ties of networks. Node perturbations (such as null muta-
tions) and edge perturbations (such as point mutations in a 
PPI domain) are introduced based on human disease- 
related gene mutations. They have also revisited gene an-
notations in yeast. Training a naïve Bayes predictor with a 
combination of different “omics” data, they are able to 
predict and experimentally validate that many open read-
ing frames (ORFs) previously thought to be “spurious” are 
actually actively transcribed (Li et al., 2008b). 

Finding causal genes for complex diseases is a big 
challenge. Michael Zhang (Cold Spring Harbor Laborato-
ries, USA & Tsinghua University, China) presented an 
improved method, CIPHER, to predict disease candidate 
genes (Wu et al., 2008). They first derive phenotypic de-
scriptions of gene mutations based on literature mining, 
then use an integrated network, consisting of a phenotype 
network, a gene-phenotype network and a protein network, 
to construct a regression model to score the consistency of 
the phenotypic description and disease description. Based 
on the concordance across different networks, they rank 
and predict genes that might be associated with a disease 
based on their confidence scores. CIPHER outperforms 
many algorithms proposed previously in the precision and 
recall of prediction, but relies little on known disease 
genes of the same phenotype. It is also effective in pre-
dicting disease genes for phenotypes without any known 
genetic origins. 

An important aim of computational biology is to predict 
protein function. Peer Bork’s group (EMBL-Heidelberg, 
Germany) uses several approaches to achieve this goal: 
homolog-based function prediction (Kensche et al., 2008) 
and protein-network based function prediction. For the 
second approach, he presented a drug-target protein net-
work based on side-effect similarities between drugs, un-
der the assumption that two drugs with similar side-effects 
may have the same drug targets. Unexpectedly, the net-
work contains 261 side-effect-driven drug-drug relations 
formed by chemically dissimilar drugs. They experimen-
tally test 20 of these. Thirteen drug-target relations are 
indicated by in vitro binding assays and 9 of these are con-
firmed in cell assays. This study leads to a new usage of 
phenotypic information to infer molecular interactions 
between marketed drugs and their protein targets 
(Campillos et al., 2008; Kuhn et al., 2008). They also ana-
lyze temporal and spatial characteristics of biological net-
works and find different levels of biological regulation, 
such as dynamic changes of gene expression in a time- 
series microarray experiment, using a newly developed 
tool, KEGG Atlas (Okuda et al., 2008). 

Nicholas Luscombe (EMBL-EBI, UK) presented a 
genome-scale analysis of how regulatory feedback controls 
the metabolic system in E. coli, and examines how two 
models (enzyme concentration or enzyme activity) are 
deployed throughout the system. Rather than using a cur-
rently popular metabolic-related analysis, he presented an 
analysis based on the metabolic regulatory network of E. 
coli dataset from EcoCyc and RegulonDB. The total of 
878 interactions integrated from the datasets, which exist 
in more than 80% of the pathways among more than 30% 
of the metabolic molecules, are gathered into two groups, 
“indirect” and “direct” interactions, corresponding to the 
enzyme concentration model and the enzyme activity 
model, respectively. Through analysis of time-scales, 
specificity of feedback, location of regulated reactions, 
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feedback metabolites, global organization, and overlap 
regulations, they find that “metabolism is regulated on a 
genomic scale in which direct and indirect interactions 
selectively control catabolism and anabolism by coordi-
nating time-scales, specificities and concentrations”. 

Non-coding RNA 

Stephen Cohen (Temasek Life Sciences Laboratory, 
Singapore) presented recent work on microRNA mutants 
in Drosophila, which provides insights into the functions 
of miRNAs in the brain and in the control of metabolism 
(Karres et al., 2007). They propose that a developmental 
switch can be accomplished by a change in transcription or 
a miRNA-mediated change in post-transcriptional gene 
expression. MicroRNA-mediated post-transcriptional gene 
regulation is thought to contribute to robustness, in part 
through noise reduction. They find that miRNA targets are 
often expressed at a very low level, possibly indistin-
guishable from noise, in miRNA-expressed cells. In such 
cases, the job of the miRNA is to keep target genes at a 
low expression level or to turn them off completely. The 
function of miRNA is very diverse: some miRNAs act as 
components of regulatory feedback loops; some are 
modulators that ensure robustness or set a threshold for 
switch activation; another set of miRNAs switch off target 
gene expression. Failure to regulate targets may have se-
vere consequences or subtle effects, depending on the type 
of the miRNA-target relationships. These studies raise 
questions about the numbers of biologically important tar-
gets. His group also developed a new method to purify 
duplexes of miRNAs bound to their targets in vivo.

Yongqing Zhang (Institute of Genetics and Develop-
mental Biology, CAS, China) presented his group’s find-
ings that FMRP, a Drosophila protein closely related to the 
human fragile X syndrome protein, appears in the 
RNA-induced silencing complex RISC and has a similar 
mutant phenotype to that of piRNA pathway piwi mutants, 
and it also has specific interactions with PIWI subfamily 
proteins PIWI and Aub. Based on these results, he suggests 
that a possible relationship between the non-coding piRNA 
pathway and FMRP might help reveal the mechanism of 
FMRP absence-caused mental retardation. 

Genomics and epigenetics 

Jun Wang (Shenzhen BGI, China) described their new 
findings based on the complete sequencing of a Han 
Chinese genome using the new generation of sequencing 
technology, the Solexa massive parallel signature se-
quencing, on unique molecular arrays. It is the first time 
that an Asian genome has been sequenced. As a represen-
tative Asian genome, it provides a better understanding of 

human evolution when compared with European genomes. 
Technically, it also provides a successful case study of 
applying the new generation short fragments (~35 mer) 
sequencing for resequencing and assembling the human 
genome based on a reference genome.  

The human body is composed of a large number of cell  
types, each defined by a specific gene expression profile.  
Cis-regulatory elements, such as promoters near the tran- 
scriptional start site, enhancers distant from the transcrip- 
tional start site and insulators in the intergenic regions,  
control gene expression by associating with specific tran- 
scription factors, many of which modify local chromatin  
structures. While each class of cis-regulatory elements  
may contribute to cell-type dependent gene expression,  
previous studies have mainly focused on the role of pro- 
moters as a driving force behind tissue-specific and dif- 
ferential expression, partly due to the lack of knowledge of  
the long range regulatory elements. To better understand  
the mechanisms of cell-type specific gene expression,  
Bing Ren’s group (University of California, San Diego,  
USA) performs ChIP-on-chip experiments to localize the  
genomic binding sites of general transcription factors, ac- 
tive chromatin modifications, and the insulator binding  
protein CTCF in the human genome in five cell types.  
They find that promoters are characterized by a high level  
of H3K4me3 and a relatively low level of H3K4me1,  
whereas the enhancers are the opposite. Using these char- 
acteristics, they further computationally predict enhancer  
and promoter sites in the human genome in Hela cells  
(Heintzman et al., 2007). Through examining the localiza- 
tion pattern of the insulator-binding protein CTCF, they  
identify a consensus binding site for CTCF and find that  
their locations remain largely invariant across various cell  
types (Kim et al., 2005; Kim et al., 2007). They also find  
that predicted enhancers are enriched near upregulated  
genes after CTCF depletion, suggesting a role of CTCF in  
blocking enhancer activities. Their recent unpublished  
ChIP-chip results on histone modification and CTCF pro- 
files in proliferating and differentiated human embryonic  
stem cells reveal a switch of acetylation to trimethylations  
on H3K27 and a change in the majority of enhancers upon  
hESC differentiation, and that the enhancers with histone  
modifications correlate with cell-specific gene expression. 

David Gifford (Massachusetts Institute of Technology,  
USA) and his collaborators have developed a system to  
study motor neuron differentiation from ES cells, where  
mouse ES cells are differentiated in vitro to form mature  
spinal motor neurons. Using this system, they find that  
Hox genes regulating this developmental course undergo  
distinct temporal changes in the patterns of chromatin  
marks and gene expression that are related to the  
exogenous signals retinoic acid (RA) and sonic hedgehog  
(Shh). Three types of data are gathered for ES cells in the  
process of becoming motor neurons: chromatin changes,  
transcription and the targets of transcription factor Olig2,  
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which is a master regulator in spinal motor neuron devel-
opment. Chromatin modifications of Hox clusters, espe-
cially H3K27me3 and H3K4me3, change during this 
process. They also find that H3K27me3 domains and 
H3K4me3 domains at the Hox A cluster are not spread 
along the chromatin, but localize close together. The mas-
ter regulator Olig2 is expressed at day 4 after mouse ES 
cells are induced to differentiate, and Olig2 binding sites 
are found primarily on H3K27me3 free domains on the 
same day. In addition, a lag of chromatin marks compared 
with gene expression is observed, including the clearance 
of H3K27me3. H3K4me3 is found to be correlated with 
GC content in the genome. Another study mapping the 
binding sites of highly conserved transcription factors in 
mouse and human using ChIP-chip experiments has re-
vealed large variations in binding sites between the two 
species (Odom et al., 2007). 

Histones are characterized by numerous post-translational 
modifications that influence gene transcriptional regulation. 
Histone acetylations are generally associated with gene 
activation, whereas histone methylations could be associ-
ated with either gene activation or repression through 
modifying different sites. However, due to the lack of 
global distribution data in higher eukaryotic organisms, it 
remains to be determined to what extent gene-specific 
combinatorial patterns of histone modifications exist. Keji 
Zhao’s group (National Institute of Health, USA) per-
forms a genome-wide analysis of 38 modifications includ-
ing both acetylation and methylation in human CD4+ T 
cells using ChIP (chromatin immunoprecipitation) with 
specific methylation or acetylation antibodies followed by 
Solexa sequencing (“ChIP-seq”). By analyzing the ge-
nome-wide distribution patterns of histone methylations 
and acetylations around the transcriptional start sites of all 
the genes together with their expression profiles, they find 
that all of the examined acetylations positively correlated 
with gene expression, which is consistent with their in-
volvement in transcriptional activation. Their analysis also 
indicates that different acetylations may target different 
regions of genes, which is consistent with previous studies 
that specific histone acetyl transferases can associate with 
diverse regions of genes. To identify the combinatorial 
patterns of histone modifications, they examine all possi-
ble combinations of 18 acetylations, 19 methylations and 
H2A.Z. They find that only a small fraction of all possible 
combinations of modifications exist at promoter regions, 
among which only a few are prevalent. They also examine 
the modification patterns in the enhancer regions and also 
find that only a small number of patterns are prevalent. 
Their results reveal that a limited number of patterns are 
associated with promoters and enhancers. In particular, 
they identify a common modification module consisting of 
17 modifications (H2A.Z, H2BK5ac, H2BK12ac, 
H2BK20ac, H2BK120ac, H3K4ac, H3K4me1, H3K4me2, 
H3K4me3, H3K9ac, H3K9me1, H3K18ac, H3K27ac, 

H3K36ac, H4K5ac, H4K8ac and H4K91ac), which is con-
sidered as a modification “backbone”, at 3,090 promoters. 
They also test the robustness of this backbone through 
perturbations and principal component analysis. These 
modifications tend to colocalize in the genome and are 
correlated with each other at an individual nucleosome 
level. Their analysis of putative enhancers reveals various 
patterns of histone modifications. Their data also suggest 
that although the genes associated with these prevalent 
histone modification patterns tend to have high expression 
levels, the histone modifications themselves do not 
uniquely determine expression but may function coopera-
tively to prepare chromatin for transcriptional activation 
(Barski et al., 2007; Roh et al., 2007; Schones et al., 2008; 
Wang et al., 2008).  

Results in sperm precursor cells of fruitfly from Xin 
Chen’s group (Johns Hopkins University, USA) con-
firmed that high levels of H3K4 trimethylation and Pol II 
binding at transcription start sites label highly expressed 
genes.

Based on recent progress, Jingde Zhu (Shanghai 
Jiaotong University, China) presented a comprehensive 
review of current technical advances in epigenetic studies. 

Using available high-resolution maps for many histone 
modifications on the human genome (“ChIP-seq” data), 
Jing-Dong Han’s group built a Bayesian network to infer 
the logical relationships among histone modifications and 
gene expression. The network not only confirms known 
relationships, but also finds some new relationships, dem-
onstrating network-based methods to be a promising new 
approach to deciphering the complex “histone code” (Yu et 
al., 2008). 

To determine whether a significant abundance bias of a 
particular protein exists between non-diabetic and diabetic 
cohorts, Jiarui Wu’s group (Shanghai Institutes for Bio-
logical Sciences, CAS, China) developed a computational 
strategy called LSPAD which stands for Localized Statis-
tics of Protein Abundance Distribution. With this strategy, 
they uncover protein markers of high, medium and low 
abundance in human blood that are associated with diabe-
tes, and the involvement of the ficolin-related complement 
system in type II diabetes.  

Fuchu He’s group (Fudan University & the Academy 
of Military Medical Sciences, China) shared their results 
on fetal liver proteomics. They identify 328 proteins with 
different expression in four fetal liver development stages. 
Based on the proteins’ function categories, they discussed 
the relationship of hepatogenesis and development of fetal 
liver. 

Similar to the combinatorial effects of histone modifica-
tions and histone isoforms or the “histone code”, different 
ribosomal subunit isoforms have recently been found to 
have distinct functions, hence the existence of a potential 
“ribosome code”. Frederick Roth’s group (Harvard 
Medical School, USA) demonstrated paralog-specific re-
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quirements for the translation of localized mRNAs by 
studying ASH1 mRNA in yeast, and that these effects are 
restricted to a distinct subset of duplicated ribosomal pro-
teins. Further comprehensive transcriptional and pheno-
typic profiling of cells lacking specific ribosomal proteins 
reveals differences between other functional roles of ribo-
somal protein paralogs in addition to their effects on 
mRNA localization. They find that the ribosomal protein 
paralogs have differential requirements for assembly and 
localization in specific genetic backgrounds (Suzanne 
Komili, 2007). They also introduced a new method they 
developed, called “the green monster” method. This 
method uses multiple GFP tags instead of one GFP at a 
time to screen the multiple mutants. The fluorescence in-
tensity of GFP rather than the GFP species will increase 
with the number of mutations. They demonstrate that when 
fluorescence intensity is measured quantitatively, this then 
avoids the limitations of total number of GFP spe-
cies/colors allowed in traditional methods of testing 
multi-gene interactions. 

Bioinformatics

Many researchers presented new or improved bioinfor-
matics methods. These works can be broadly categorized 
into five themes. 

Finding transcription factor binding sites and gene regu-
latory modules 

Wen-Hsiung Li’s group (University of Chicago, USA) 
presented a new method to detect gapped motifs and to 
search for related gene regulatory modules in yeast (Tsai et 
al., 2006; Chen et al., 2008). Here, a gapped motif is a re-
curring DNA sequence pattern which is well conserved at 
both ends except for the inner “gapped” position. The key 
idea of their approach is to find short, conserved motifs 
first. Then, gapped motifs are identified by repeatedly 
linking two of the short motifs which flank a degenerate 
position. 

Machine learning approach to disease status prediction 

Xuegong Zhang’s Lab (Tsinghua University, China) 
investigates the problem of classifying the status of breast 
cancer disease based on global gene expression profiles 
(Lu et al., 2008c). To this end, the authors propose a new 
learning algorithm, R-SVM, which jointly performs classi-
fication and feature selection (Zhang et al., 2006). Their 
results show that some features of the disease could be 
well predicted by gene expression, and the computation 
analysis can provide new understanding to the underlying 
biology even when some features can not be predicted 
satisfactorily with only molecular features. 

Bioinformatics approaches to protein structure and mo-
lecular interactions prediction 

Amy Keating’s group (Massachusetts Institute of 
Technology, USA) studies the sequence and structural 
properties of the alpha-helical coiled coil motif, which is 
responsible for the dimerization of bZIP proteins (Newman 
and Keating, 2003; Grigoryan and Keating, 2006). They 
first conducted experiments to measure the strength of 
interactions between human bZIP transcription factors, as 
well as the stabilities of some homo- and hetero-dimer 
bZIPs in solution. Based on these results, they trained an 
SVM-classifier to predict bZIP interactions and proposed a 
computational approach to design novel peptides that spe-
cifically bind to a human coiled coil protein. 

Luhua Lai’s group (Peking University, China) study 
the arachidonic acid metabolic pathway (which is related 
to human inflammation) as a test case for investigating 
multi-way drug-targets interaction (Yang et al., 2007). 
Through computationally simulating drug effects on the 
pathway, they find that it is crucial to block both the 
5-LOX and the COX-2 pathways to inhibit the inflamma-
tory mediators effectively. Combinatorial target control 
strategies are proposed based on this finding to guide bet-
ter drug design. 

Network-based bioinformatics 

As mentioned above in the Evolution and Network ses-
sions, Zhirong Sun’s group introduced their work on pre-
dicting PPI networks based on “evolutionary scenario” 
(Zhou et al., 2006), Michael Zhang presented a net-
work-based approach for predicting human disease genes 
based on integrated functional networks (Wu et al., 2008). 
The basic assumption is that functionally related genes will 
be more likely to co-evolve or be responsible for 
phenotypically similar diseases. 

As published knowledge and information increases 
rapidly, the scientific literature has become the richest re-
source for scientific research. In order to effectively utilize 
this resource, Wei Li’s group (Institute of Genetics and 
Developmental Biology, CAS, China) presented a method 
for predicting human PPI using text mining with a naive 
Bayes model. Specifically, Bayes’ theorem is used to com-
bine evidence from the correlation of gene expression with 
prior knowledge of PPIs. They also validated some of the 
predicted PPIs through yeast two-hybrid assays, identify-
ing a putative novel subunit of BLOC-1 complexes in-
volved in vesicle trafficking. 

Easy-to-use databases 

Databases are a sine qua non of bioinformatics research. 
Xiujie Wang’s group (Institute of Genetics and Develop-
mental Biology, CAS, China) introduced their Gene On-
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tology Enrichment Analysis Software Toolkit (GOEAST) 
(Zheng and Wang, 2008). The tool contains data from up 
to 60 species. Using this database, they analyze the gene 
functions of differentially expressed genes between broiler 
and layer chicken skeletal muscles during different devel-
opmental stages, and find that these differentially ex-
pressed genes are related to muscle development and me-
tabolism, and that they are enriched with miRNA targets, 
with fewer SNPs within the miRNA binding sites. 

Liping Wei’s group (Peking University, China) intro-
duced the KOBAS toolkit they developed for KEGG 
pathway identification (Wu et al., 2006). Using this data-
base, they find 18 statistically significant upstream or 
downstream signaling pathways involved in drug addiction. 
Five of those pathways are consistently enriched for some 
addictive drugs. They also find some feedback loops in 
these pathways, which might be helpful to explain why 
addiction is irreversible (Li et al., 2008a). 

In addition to talks on research projects, a workshop on 
scientific English writing skills was given by Michael 
Cusick (Dana-Farber Cancer Institute, USA). He summa-
rized common mistakes made by native and non-native 
English speakers alike, and clarified many misconceptions 
about writing a good paper on systems biology, with a 
major focus on how to convey a precise meaning with the 
least number of words. Many vivid examples made the 
audience laugh unstoppably, and also made an unforgetta-
ble impression of how one can easily write something ri-
diculous by not paying proper attention to good writing style. 
Overall, the variety and high quality of the given presenta-
tions made the meeting an unforgettable event to everyone 
present, but equally valuable was the opportunity for direct 
interaction with some of the greatest minds and most active 
scientists in the field of developmental systems biology. 
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