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Impacts of protein–protein interaction domains
on organism and network complexity
Kai Xia,1 Zheng Fu,1 Lei Hou, and Jing-Dong J. Han2

Chinese Academy of Sciences, Key Laboratory of Molecular Developmental Biology, Center for Molecular Systems Biology,
Institute of Genetics and Developmental Biology, Beijing 100101, China

It has been a puzzle that genome or proteome sizes are not correlated with the complexity of the organisms.
Although alternative splicing and noncoding and regulatory elements explain some of the differences, the complexity
of the protein interaction network and regulatory network may provide additional explanations. Here, we collected
642 domains that mediate protein–protein interactions (PPIs) and examined the evolution of the PPI domains and its
impact on organismal complexity and PPI network complexity. In agreement with previous more general studies of
protein domains, a significant expansion of PPI domains per proteome was found in metazoa. We also found both
the number and coverage of PPI domains per protein increased. However, a better correlation with complexity was
seen with increasing PPI domain coverage per protein, so that proteins in complex organisms are more compact and
specialized in PPI. Such a structural adaptation of the proteins is correlated with the number of interactions that the
proteins can make in PPI networks, and seems to be a more favorable way to increase network connectivity than
other structural adaptations.

[Supplemental material is available online at www.genome.org.]

Genome size is not always proportional to the genetic complex-
ity. For example, Xenopus laevis and human have essentially the
same genome size while they have a magnitude of difference in
complexity, estimated by the number of cell types in an organ-
ism. This puzzling phenomenon, dubbed as the “C-value para-
dox,” refers to the lack of correlation between the complexity of
an organism and its DNA content (C-value) (Futuyma 2005). In
terms of gene number, human has about 20,000 ∼ 25,000 genes,
just a little more than the worm Caenorhabditis elegans, whereas
C. elegans has about 29 cell types and human 169. These phe-
nomena lead to the question “why do humans have so few
genes?” (Pennisi 2005)

One explanation is that alternative splicing makes up the
difference in gene number, and therefore in complexity, by pro-
viding alternative isoforms to carry out different functions. How-
ever, so far, most alternatively spliced isoforms have been found
to have similar, if not identical, functions (Lopez 1998; Smith
and Valcarcel 2000; Graveley 2001). A second factor, which is
considered to be a major factor contributing to the paradox is the
“dark matter,” or the noncoding and regulatory elements in the
genome (Gerstein et al. 2007; Prasanth and Spector 2007). Be-
sides these two, a third alternative answer to this question is that
humans have a much more complex molecular interaction net-
work (Koonin and Galperin 2003), that is, the connections in the
network are greater in number and much more intricate and
dynamic in pattern, despite a similar number of nodes to lower
organisms. Here, we present our study from the perspective of
protein–protein interaction (PPI) networks, or the interactome
networks.

PPI functions have been found to be enriched in domain
superfamilies whose abundance in a proteome (the number of
proteins containing a superfamily of domains in a proteome)
correlates with organismal complexity (Vogel and Chothia
2006). In this study, we specifically examined whether expansion
of PPI domains in general is a major factor contributing to or-
ganismal complexity. Further are changes at the individual pro-
tein level involved, which might directly link organismal com-
plexity to network complexity. Specifically, does an increase in
PPI domain number, length, or coverage per protein also con-
tribute to organismal complexity, and could these structural ad-
aptations increase organismal complexity through increasing PPI
network complexity?

We collected 642 protein domains that are involved in PPI
and compared the domain compositions of proteins in 19 differ-
ent organisms ranging from Kluyveromyces lactis to Homo sapiens,
as well as two plants, Oryza sativa and Arabidopsis thaliana. We
also included a slime mold, Dicytostelium discoideum, as a transi-
tion point between unicellular organisms and metazoan (Supple-
mental Table 1). Surprisingly, we found that specialization and
compaction of PPI domain-containing proteins through increas-
ing coverage of PPI domains per protein are potentially the most
significant structural changes associated with organism complex-
ity (measured as number of cell types in an organism) and net-
work complexity (measured as number of PPIs of a protein).

Results

Collection of PPI domains

A protein domain is a structural unit that often folds indepen-
dently of the rest of the protein (David and Nelson 2005). We
determined each protein’s domain architecture as annotated by
InterPro (Mulder et al. 2005), an integrated domain database that
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combines a number of detection methods and annotations cur-
rently from 11 databases. PPI domains are those that can recog-
nize exposed sites on their binding partners. Here, we obtained a
list of PPI domains through four sources: (1) annotated to be
involved in protein domain–domain interactions by the Data-
base of Domain Interaction & Bindings Database (DDID), (2)
have a GO term of “protein (any protein) binding” in the Inter-
Pro domain gene ontology (GO) annotation database, (3) labeled
as “experimentally proven to be involved in PPI” in the InterPro
Interactions field, (4) have protein binding or interaction func-
tion described in the InterPro domain description or literature.
This results in 642 PPI domains that are found in the 19 organ-
isms. The 642 PPI domains are selected from all protein families
listed in the InterPro database without any prior selection for a
particular family or representatives of a small number of families.
PPI domains are annotated solely based on whether they are
experimentally determined or annotated by DDIB and InterPro
as domains participating in PPI. These domains, together with
the source of evidence supporting their PPI function, are listed in
Supplemental Table 2. Because the SwissProt database contains
only experimentally validated polypeptide sequences, it may be
more biased than proteins predicted from genomic sequences,
such as those in the TrEMBL database, which is developed to
complement the SwissProt entries. We therefore based the analy-
ses on UniProt proteins, which is a combination of SwissProt and
TrEMBL protein entries.

We first looked for any evolutionary trend of PPI domains
among the 19 species (Supplemental Table 1). Compared with
unicellular organisms, the percentage of PPI domain-containing
proteins increases dramatically in multicellular animals, indicat-
ing a big expansion of PPI domains at the proteome level upon
the transition from unicellular to metazoan organisms (Fig. 1A).
We listed the proportions of proteins unannotated for any do-
main to examine whether a particular organism is significantly
under- or overannotated for domain structures as compared with
Saccharomyces cerevisiae or human. If so (proportions test
P < 0.05), the organism’s name is marked with an asterisk or a
pound sign in Figure 1A. It indicates that rice, Candida albicans,
Neurospora crassa, and Dictyostelium discoideum are significantly
underannotated, and Arabidopsis, fission yeast, zebrafish, frog,
rat, mouse, and cow are significantly overannotated. To control
for the annotation differences, we excluded all of the proteins
with no domain annotation from our analysis. For example, the
percentage of proteins having PPI domains versus the total pro-
teins that have at least one annotated domain is shown in Figure
1A. Different accuracy of different genome and proteome se-
quences and annotations is bound to remain one cause of varia-
tion between organisms, even when significantly reduced by
considering only the domain-annotated portion of the pro-
teomes. Therefore, we studied not only the change between yeast
and human, but also those in 17 other different species to derive
statistically valid conclusions that are independent of annotation
variations. In addition, wherever possible, we included the non-
PPI domains as controls for any potential domain annotation
biases. If the PPI and non-PPI domains have the same trend, bias
must be considered.

Thirty-seven percent of the PPI domains are specific to meta-
zoa (“metazoan specific”), whereas only 8% of the PPI domains
are specific to unicellular organisms. Ten percent of them are
“expanded” proteome-wide in metazoa, that is, an increased frac-
tion of a metazoan proteome contains these domains. Measured
by the dN/dS of each domain (Methods), both “metazoan spe-

cific” and “expanded” PPI domains seem to evolve faster than
non-PPI domains and other PPI domains (Supplemental Data;
Supplemental Fig. 1; Supplemental Tables 3, 4). The abundance
distribution and the evolutionary rates are consistent with the
previous findings that PPI functions are enriched among protein
superfamilies whose expansions correlate with organismal com-
plexity. Protein domains with signaling and regulatory functions
have been repeatedly found highly expanded in various meta-
zoan proteomes (Kirschner and Gerhart 1998; Rubin et al. 2000;
Lander et al. 2001; Pawson and Nash 2003; Vogel and Chothia
2006). We also found that PPI domains specific to or expanded in
metazoa preferentially participate in signaling and regulation
(Supplemental Data; Supplemental Table 5).

Expansion of PPI domains in individual proteins

PPI domain content of individual proteins directly dictates what
proteins they interact with and what PPI network they construct.
We therefore examined whether the PPI domains are also ex-
panded at the level of individual proteins through three types of
structural changes: domain number, domain length, and domain
coverage (see below for definition). We examined the whole col-
lection of PPI domains on a protein, not just any particular do-
mains. We also analyzed non-PPI domains as a whole collection
to compare with PPI domains and control for study bias in higher
organisms.

Different domains often have distinct functions, so that a
protein with multiple domains may have more opportunities to
interact with other proteins or small molecules to carry out ad-
ditional functions. We first calculated the percentage of proteins
with single or multiple PPI domains in different proteomes (Fig.
1B). We found that through evolution, multicellular organisms
tend to have larger fractions of proteins with multiple PPI do-
mains compared with the fractions of proteins with a single PPI
domain, but that the fraction of proteins containing multiple
non-PPI domains does not increase relative to that of single non-
PPI domain-containing proteins (Fig. 1C). We then examined the
relationship of PPI domain number increase on individual pro-
teins to organismal complexity, estimated by the number of cell
types in an organism (Vogel and Chothia 2006).

To ensure the robustness of the analysis and to rule out the
possibility that only small proportions of proteins are responsible
for the results, we randomly divided the proteins in each organ-
ism into 10 nonoverlapping groups, and carried out leave-one-
out analysis and boxplot analysis. By leaving one group out and
examining the remaining nine groups as a combination, we ob-
tained one correlation to organismal complexity for each nine-
group combination (Fig. 1D). This would detect differences in the
correlations obtained using different datasets. By boxplot, the
variations among all of the 10 different datasets were visualized
and considered when examining a correlation between two vari-
ables. The average non-PPI domain number per protein is slightly
anticorrelated with organismal complexity, or the number of cell
types in an organism (Supplemental Fig. 2A), while the PPI do-
main number per protein is highly correlated with organismal
complexity (Fig. 1D). Similar results can be seen if all 10 groups
were analyzed together with the variations among different
groups taken into account (Supplemental Fig. 3A,B).

Increased coverage by PPI domains on proteins

In addition to an increase in PPI domain number per protein, we
also found that in complex organisms PPI domain-containing
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proteins become more compact or packed with PPI domains. By
“compactness,” we refer to proteins with smaller fractions of do-
main-free regions that lack any domain. These domain-free re-

gions are not necessarily the disordered regions, which can fre-
quently appear inside DNA-binding and protein-binding do-
mains, especially on signaling proteins (Dunker et al. 2005).

Figure 1. (Legend on next page)
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Thus, compactness does not necessarily correspond to the tight-
ness in proteins’ three-dimensional packing. To examine such
“compactness” quantitatively, we defined a metric “domain cov-
erage” to quantify the functional compactness of protein domain
architecture. It is defined as the percentage of a protein covered
by certain protein domains over its entire length. Domain cov-
erage then represents the percentage of the functional regions
within the full length of a protein. It can be calculated by the
following formula:

Domain Coverage = � Each domain length

Protein length
× 100

Higher domain coverage value, when all of the domains are in-
cluded, implies a compact protein with fewer nonfunctional re-
gions over its primary structure. PPI domain coverage, that is, the
percentage of the entire length of a protein occupied by PPI do-
mains, may also indicate whether a protein is more specialized
with fewer non-PPI domains.

We used heatplots to visualize the evolutionary trend of the
PPI and non-PPI domain coverage (Fig. 1E,F). In addition to the
rise of multi-PPI domain proteins in higher organisms, proteins
shifted from being enriched at low PPI domain coverage in lower
organisms and plants to being enriched at high coverage in ani-
mals (Fig. 1E). In cow and human, >20% of the annotated pro-
teins have PPI domain coverage near 100 (Fig. 1E). In contrast,
the non-PPI domain coverage does not change (Fig. 1F). In addi-
tion, the shift is not gradual; instead, it is from one extreme
(0%–20%) to the other (90%–100%). The fractions with medium
coverage remain almost constant (Fig. 1E), whereas the fractions
between 0%–20% and 90%–100% change. This suggests that if a
protein acquires a PPI domain or function, it tends to become
specialized, so that it contains few other domains and domain-
free sequences (Fig. 1E). For example, a whole category of adap-
tors and scaffold proteins specialized for PPI, such as GRB2, has
high PPI domain coverage and is expanded greatly in higher
organisms. Non-PPI domain coverage is not correlated with or-
ganismal complexity (Supplemental Fig. 2B), whereas PPI do-
main coverage is highly correlated with organismal complexity,
even more so than the average PPI domain number (Fig. 1G).
Both the leave-one-out and boxplot analyses produced similar
results (Fig. 1G; Supplemental Fig. 3C,D).

We also examined whether an increase in average domain
length can explain the increase in PPI domain coverage. As
shown in Figure 1H, the average length of PPI domain is slightly

correlated to organismal complexity, whereas that of the non-PPI
domain is negatively correlated to organismal complexity
(Supplemental Fig. 2C), indicating that the PPI domain length
increase is small, but not attributable to annotation bias, and
may contribute to the increase in domain coverage and organis-
mal complexity to a small extent (Supplemental Fig. 3E,F).

How does a protein increase its domain coverage or com-
pactness through evolution? We selected 2629 groups of ortholo-
gous proteins that have orthologs in at least five metazoan spe-
cies and explored the change of protein structure within each
group (Fig. 2; Methods). Here, we put forward four possible ex-
planations for the increase of PPI domain coverage on proteins
through evolution. The first is PPI domain length increase (Figs.
1H, 2A). The second is that some orthologous proteins gradually
lose the domain-free sequences (not occupied by known protein
domain) on their N termini (Fig. 2B), C termini (Fig. 2C), or in
the middle of the protein during evolution. The third explana-
tion is the loss of non-PPI domains. The fourth is the replace-
ment of the domain-free regions with new functional domains
(Fig. 2D). Among the 191 ortholog groups that have PPI domains
in at least five metazoan species and are found to increase in PPI
domain coverage during evolution (Spearman rank correlation
coefficient [RCC] of PPI domain coverage to organismal com-
plexity > 0.6), loss of non-PPI domains or decrease in non-PPI
domain length (RCC to organismal complexity < �0.55) to-
gether accounts for a minimal 3.7% of the cases. Whereas trim-
ming the domain-free sequences (RCC to organismal complex-
ity > 0.55, RCCs are the same below) contributes the most to PPI
domain coverage increase (51.3%), followed by increasing PPI
domain length (31.4%) and PPI domain number (10.5%).

Other proteins bear no clear sequence similarities across
many species. We found that for all of the proteins in the 19
organisms, reduced domain-free regions best explain an increase
of PPI domain coverage on a protein than any other factors (lin-
ear regression R2 = 0.724). Increased PPI domain length contrib-
utes slightly to PPI domain coverage increase (linear regression
R2 = 0.119). All other factors contribute very little to it (linear
regression R2 < 0.1). Hence, removing the sequences outside of
any functional domains to make the protein become more func-
tionally compact is the most common way to enrich for PPI do-
mains and to increase PPI domain coverage at the protein level.

Structural changes at the protein level are also consistent
with the expansion at the proteome level. The proteins contain-
ing “Expand” or “Metazoan Specific” PPI domains apparently
have higher PPI domain number and coverage, but not longer
PPI domains than those having the PPI domains that are “Com-
mon” to unicellular organisms, metazoa, and plants, or “Shrink”

Figure 1. Evolutionary structural adaptations toward PPI domain expansion at the individual protein level. (A) The percentage of proteins with PPI
domains (maroon blocks), other non-PPI domains (cyan blocks) among all proteins with domain annotation in each organism (above X-axis), and those
without any annotated domains (beige blocks) in the proteomes of different organisms (below X-axis). The organisms that are significantly under- or
overannotated for domains are indicated by asterisks or pound signs before their names. (B) Percentage of proteins with single (cyan) or multiple
(maroon) PPI domains in different organisms among PPI domain-containing proteins. (C) Percentage of proteins with single (cyan) or multiple (maroon)
non-PPI domains in different organisms among non-PPI domain-containing proteins. (D) The relationship of the number of PPI domains per protein to
the number of cell types in an organism in each of the leave-one-out nine-group combinations (LO1 ∼ 10). The 10 regression lines, PCCs, and linear
regression slope P-values result from 10 leave-one-out analyses, one for each nine out of the 10 random protein groups (same for G and H). (E)
Distribution of PPI domain coverage. Proteins in each organism are divided into 10 groups based on their PPI domain coverage. The boundaries of each
PPI domain coverage interval are shown on the top of the plot. The numbers in the grid give the percentage of the total domain-annotated proteins
in each organism that belong to a certain PPI domain coverage interval. The color intensity in each cell is proportional to the relative percentages within
each organism (row). (F) Distribution of non-PPI domain coverage. The color intensity and number inside each grid are denoted as in E, except that PPI
domains are replaced by non-PPI domains. (G) The relationship of average PPI domain coverage to the number of cell types in an organism in each of
the leave-one-out nine-group combinations (LO1 ∼ 10). (H) The relationship of average length of PPI domains to the number of cell types in an organism
in each of the leave-one-out nine-group combinations (LO1 ∼ 10).
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in multicellular organisms, with the proteins having “Metazoan
Specific” PPI domains display the highest PPI domain coverage
overall (Table 1; P-values are listed in Supplemental Table 6).

These results indicate that domain-free regions are more dis-
pensable (David and Nelson 2005). In complex organisms, there
is a selection for new, more, and slightly longer PPI domains, and

Figure 2. Examples of increasing domain coverage on orthologous proteins through evolution. PPI domain length increase (A), loss of the domain-free
sequences at orthologous proteins’ N termini (B), C termini (C), and PPI domain insertion (D) that contribute to increased PPI domain coverage through
evolution. Each protein is labeled with its SwissProt identifier. A protein’s name suffixed by the abbreviation of its species name is included inside the
parentheses. Within each group, orthologous proteins are ordered by taxonomy. Colored blocks stand for different domains and their annotations are
listed at the bottom of each figure. PPI domains are indicated in the block-color legend.
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fewer domain-free sequences in the metazoan PPI domain-
containing proteins.

PPI domain coverage and PPI network complexity

At the molecular level, the correlation between protein structural
complexity and organismal complexity might correlate with
complexity of protein–protein or protein–nucleic acid interac-
tion networks. To investigate this hypothesis, the relationship of
PPI domain arrangements in individual proteins to the complex-
ity of their PPI network was examined. The most straightforward
way to increase network complexity is to increase the interaction
degrees (k) of proteins, that is, the number of interactions a pro-
tein makes in a network. Interaction degree is therefore a most
simple measurement of network complexity. We studied the
high-quality PPI networks constructed from literature-based hu-
man PPIs collected by the Human Protein Reference Database
(HPRD) (Peri et al. 2003) and from the core yeast PPI data set
curated by the Database of Interacting Proteins (DIPcore) (Xe-
narios et al. 2000).

We examined whether the expansion of PPI domains in a
protein is correlated with the protein-interaction degrees of the
protein in PPI networks. We compared a protein’s interaction
degree against each of the following variables: PPI and non-PPI
domain number, PPI and non-PPI domain coverage, and PPI and
non-PPI domain length. Again, we applied both leave-one-out
and boxplot analyses to ensure the robustness of results and to
exclude the effects due to a smaller number of outliers (Fig. 3;
Supplemental Figs. 4, 5). Among the six variables, PPI domain
coverage has the highest correlation with protein interaction de-
gree (Fig. 3A,B; Supplemental Figs. 4, 5), more than between PPI
domain number and degree (Fig. 3C,D; Supplemental Fig. 5), and
between PPI domain length and degree (Fig. 3E,F). Testing the
significance of the association by linear regression indicates that
only PPI domain coverage per protein is significantly correlated
with the PPI degree of the protein. This is in agreement with PPI
domain coverage being the factor most correlated to organismal
complexity (Fig. 1). When the proteins in PPI networks were
separated into hubs (k � 5) and non-hubs (k < 5), it is obvious
that compared with non-hubs, hubs have small shifts to higher
PPI domain number (Fig. 4A,B) and large shifts to higher PPI
domain coverage (Fig. 4C,D) in both yeast and human PPI net-
works.

An increase of PPI interaction degree with an increase in the
number of PPI domains on a protein would be naturally ex-
pected. But why does PPI domain coverage rather than the num-
ber of PPI domains per protein significantly correlate with PPI
degrees? We wondered whether it was due to the constraints
(e.g., structural constraints) for a protein to gain more domains
than to increase coverage. Consistent with this hypothesis, we
found that proteins with high domain number are rare in a pro-

teome (5.2% proteins in human and 1.1% in yeast with domain
number > 3), and the proportion of proteins decreases sharply as
the number of PPI domains on the proteins increases, suggesting
that there are constraints for the protein to gain a domain. In
contrast, although the proteins with low PPI domain coverage
are more common, the distribution of PPI domain coverage is
much flatter than the distribution of domain number (Fig. 4),
suggesting relaxed constraints. Consequently, there can be a
larger number of hubs having high PPI domain coverage than
having high PPI domain number (Fig. 4).

Discussion

Our main finding is that PPI domain coverage provides the best
genome-wide predictor of organismal complexity yet reported.
PPI domain coverage is also highly correlated with PPI degree.
This suggests that complexity of PPI may be required for organ-
ismal complexity.

Why does PPI domain coverage correlate better with organ-
ismal complexity than with PPI network degree if network com-
plexity is required for organismal complexity? It cannot be ex-
cluded that PPI domain coverage might be able to affect organ-
ismal complexity independently of PPI network complexity. For
example, PPI domains could also be associated with and contrib-
ute to the complexity of the regulatory network and metabolic
networks, albeit probably more indirectly. However, we note that
correlations to PPI network complexity might be underestimated
because the PPI network is made noisy by false-positive PPIs,
because the network datasets are incomplete, or because PPI de-
gree is an oversimplified measurement for network complexity.
These factors could also explain why all of the parameters we
measure correlate less significantly with network complexity
than with organismal complexity. If such limitations to the net-
work statistics could be overcome, association of other factors to
PPI degree might surface.

Our results suggest that, although an increase in interaction
degree could be achieved by an increase in either PPI domain
number or PPI domain coverage, the increase in domain coverage
is a more frequent means to increase PPI degree. The preference
for increasing PPI domain coverage versus PPI domain number
suggests protein structure constraints on network connectivity. It
will be important to explore the molecular relationship between
network complexity and PPI domain coverage in the future.

Our findings argue that, in addition to the possible contri-
bution of alternative splicing, increased complexity in the higher
organisms may also be attributable to protein structures that al-
low a protein to be more compact, specialize in PPI, and achieve
more interactions among the same number of network nodes.
From the network point of view, an increase in alternative splic-
ing forms is a means of adding nodes to the network, whereas PPI

Table 1. Structural and network properties of proteins containing PPI domains of different evolutionary profiles

Metric Expand Common Shrink Metazoan specific Multicellular UM Metabolic Non-PPI

PPI DN 3.754 1.965 1.733 2.315 5.098 3.952 0.125 0.746
PPI DC 0.519 0.465 0.491 0.757 0.602 0.559 0.018 0.068
PPI DL 70.050 117.898 133.142 116.156 72.637 99.311 103.400 68.916
Non-PPI DN 0.861 0.594 0.495 0.419 0.944 0.641 1.284 1.486
Non-PPI DC 0.094 0.077 0.089 0.046 0.089 0.087 0.783 0.653
Non-PPI DL 79.406 101.602 159.567 94.671 96.895 115.016 242.589 171.742

(DN) Domain number; (DC) domain coverage; (DL) Domain length; (UM) for unicellular and metazoan.
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domain expansion on individual proteins is a means of adding
edges to the network. Increasing edges is a much more efficient
way to increase complexity compared with increasing nodes, as
the number of potential edges is the square of the number of
nodes in a network (Papin et al. 2005).

Methods

Datasets
All domain information was downloaded from the InterPro ftp
site (ftp://ftp.ebi.ac.uk/pub/databases/interpro/) on September 5,
2007. After parsing the XML file, we obtained the entire struc-

tural information of each protein, including its family, domain,
repeat, binding site, active site, post-translational modification
site, and annotated Gene Ontology information. An InterPro do-
main is an independent structural unit, which can be found
alone or in conjunction with other domains or repeats and an
InterPro repeat is a region that is not expected to fold into a
globular domain on its own (Mulder et al. 2005) (ftp://
ftp.ebi.ac.uk/pub/databases/interpro/user_manual.txt). To avoid
excluding useful structural information of proteins, we define
the word “Domain” in this work as a functional and structural
unit that is confirmed by an InterPro domain entry, InterPro
family entry, or InterPro repeat entry. InterPro combines a num-
ber of databases, and we chose PANTHER, Pfam, PIRSF, PRINTS,

Figure 3. Relationships of PPI domain coverage, number, and length to PPI degrees by leave-one out analysis. The average human and yeast PPI
degrees of proteins in each of the nine out of 10 group combinations within each interval of PPI domain coverage (A,B), PPI domain number (C,D), or
PPI domain length (E,F) are plotted against their average values within the intervals. The 10 regression lines, PCCs, and linear regression slope P-values
result from 10 leave-one-out analyses (LO1 ∼ 10), one for each nine out of the 10 random protein groups.
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ProDom, PROSITE, SMART, and TIGRFAMs as the domain archi-
tecture data sources. These databases use different methodologies
to identify proteins’ domain architecture, and they may give rise
to different domain lengths and domain numbers at the same
stretch of sequence on a protein. We used the longest functional
or structural segment within an InterPro domain/family/repeat
annotation to represent the boundary of the domain.

Domain coverage depends on the correctness of domain
boundaries as given by InterPro, which might not be always ac-
curate. But, there is no apparent bias toward a larger boundary for
higher organisms or for higher degree proteins, as indicated by
the lack of correlation of non-PPI domain length or coverage
with organismal complexity or PPI degree. Comparatively, it is
easier to find scenarios where the domain number bias is intro-
duced by study and annotation bias, but again, both can be con-
trolled by non-PPI domains.

All of the protein data were downloaded from UniProt
(ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/complete/) on September 5, 2007.

HPRD data set was downloaded from www.hprd.org on
March 7, 2005.

The yeast core data set (DIPcore) was downloaded from
http://dip.doe-mbi.ucla.edu on June 22, 2006.

We combined the DDIB (http://www.biosino.org/DIDWeb/
index.htm) PPI domains, Pawson’s collection of protein interac-
tion domains (http://pawsonlab.mshri.on.ca/), the InterPro do-
main description, the InterPro experimentally confirmed PPI do-
main annotation, and the GO annotations (ftp://ftp.ebi.ac.uk/

pub/databases/interpro/interpro2go) for
the InterPro domain, family, and repeat
to arrive at the 642 protein–protein inter-
action domains (Supplemental Table 2).

The orthologous proteins were
downloaded from Inparanoid database
(http://inparanoid.sbc.su.se).

Taxonomy
InterPro has 13,383 organisms, and
most of them only have a very limited
number of proteins in the database. We
selected the 19 eukaryotic organisms
based on the following criteria: (1)
nearly intact proteome; (2) model ani-
mals or organism for genetics analysis;
(3) the full genome sequences are due to
finish soon. Dictyostelium discoideum is a
slime mold that grows up with an inde-
pendent unicellular form; however, they
aggregate together by releasing cAMP to
signal each other and generate a multi-
cellular structure in response to an unfa-
vorable environment such as starvation
(Postma et al. 2004). Hence, we chose D.
discoideum as a transitional species be-
tween unicellular organisms and multi-
cellular organisms. The identifier, scien-
tific name, and common name of the 19
organisms selected are shown in Supple-
mental Table 1. The phylogeny is deter-
mined by NCBI Taxonomy (http://
www.ncbi.nlm.nih.gov/Taxonomy/
Browser/wwwtax.cgi?mode=Root) and
Tree of Life web project (http://
tolweb.org/tree/).

Leave-one-out and boxplot analysis
Proteins in each organism were randomly divided into 10
nonoverlapping groups of an approximately equal number of
proteins. The average domain number (DN), domain coverage
(DC), or domain length (DL) was calculated 10 times for each
organism (to test association to organismal complexity) or
within each interval of DN, DC, or DL (to test association to PPI
degree, whose average was also calculated), using a different nine
out of the 10 groups (leaving one group out) each time. The
boxplots were generated by using all of the average values in each
of the 10 groups for an organism (to test association to organis-
mal complexity) or within an interval of DN, DC, or DL (to test
association to PPI degree). Same procedures were applied to both
PPI domains and non-PPI domains.

dN/dS calculation

dN/dS was calculated by the YN00 program (Yang and Nielsen
2000) using the DNA sequences of PPI domains in orthologous
pairs of proteins between human and mouse. Ortholog pairs are
obtained from Inparanoid database (http://inparanoid.sbc.su.se).
Only the highest ranking orthologous pair in each ortholog
group was considered as orthologs, so that each ortholog protein
belongs to one and only one ortholog group. For each shared PPI
domain on orthologs, we first extracted the amino acid se-
quences of the human and mouse domains, and then aligned
them by ClustalW with default parameters to match the domain

Figure 4. Distribution of PPI domain number and PPI domain coverage among human and yeast
protein hubs and non-hubs. Proteins in human (A,B) and yeast (C,D) PPI networks are divided into hubs
(k � 5) and non-hubs (k < 5). The fraction of hubs and non-hubs with a certain number of PPI domains
or PPI domain coverage are plotted against the PPI domain number (A,C) and average PPI domain
coverage (B,D).
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sequences. After replacing the amino acid sequences by their cor-
responding DNA sequences defined in Ensembl Genome Data-
base (www.ensembl.org), the human and mouse DNA sequences
of a domain on a pair of orthologs between the two organisms
were used as input to the YN00 program with default parameters.

PCC, RCC, and regression calculation

Pearson correlation coefficients (PCC), Spearman rank correla-
tion coefficients (RCC), linear regressions, or boxplots were cal-
culated or plotted using R (http://www.r-project.org/). PCC and
RCC both measure the degree of association between two vari-
ables and are defined as PCC = (∑n

i=1(Xi � X)(Yi � Y)/(n � 1)SxSy),
where Sx and Sy are the standard deviations of variables X and Y,
respectively, n is the length of the vector, and RCC = 1 � 6∑(d2/
n(n2 � 1)), where d2 is the difference in statistical rank of corre-
sponding variables and is an approximation to the exact PCC.
Their values range between �1 and 1, with 1 signifying perfect
correlation, –1 perfect anticorrelation, and 0 no association. For
linear regression, y = ax + b, P-values for slope measures the sig-
nificance of the association between two variables, R2 for the
regression tests the goodness of fit of the data to the regression
model.

GO enrichment test

Enrichment was determined by Fisher exact test, followed by
Benjamini-Hochberg correction as described previously (Xia et al.
2006) for multiple hypothesis testing on all the annotated Inter-
Pro ID in the InterPro ID to GO term mappings.
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