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SUMMARY

Extrinsic BMP and LIF signaling collaborativelymain-
tain mouse embryonic stem cell (ESC) pluripotency,
whereas appropriate ERK activity is essential for
ESC fate commitment. However, how the extrinsic
signals restrain appropriate ERK activity remains
elusive. Here, we show that, whereas LIF sustains
relatively high ERK activity, BMP4 can steadily atten-
uate ERK activity by upregulating ERK-specific dual-
specificity phosphatase 9 (DUSP9). This upregulation
requires Smad1/5 andSmad4 and specifically occurs
to DUSP9, but not other DUSPs, and only in ESCs.
Through DUSP9-mediated inhibition of ERK activity,
BMP signaling reinforces the self-renewal status of
mouse ESCs together with LIF. Upon LIF withdrawal,
ESCs spontaneously undergo neural differentiation,
during which process DUSP9 can partially mediate
BMP inhibition on neural commitment. Collectively,
our findings identify DUSP9 as a critical mediator of
BMP signaling to control appropriate ERK activity
critical for ESC fate determination.

INTRODUCTION

Understanding the detailed molecular mechanisms that govern

embryonic stem cell (ESC) fate of self-renewal versus differenti-

ation has been an urgent task for both basic research and clinical

practices. Mouse ESC fate decision could be controlled both

internally and externally. Internally, several core transcription

factors, such as NANOG, POU5F1 (OCT4), and SOX2, are re-

garded to form autoregulatory transcriptional circuits that play

pivotal roles in maintaining ESC self-renewal and pluripotency

(Boyer et al., 2005; Chen et al., 2008; Kim et al., 2008). Recent

studies have also highlighted the epigenetic processes (DNA

methylation, histone methylation, and so on) as important
Ce
internal regulation mechanisms of ESC fate determination

(reviewed in Bibikova et al., 2008). One of the most impressive

internal regulator identified is the extracellular signal-regulated

kinase (ERK)—an intracellular signaling mediator of mitogen-

activated protein kinase (MAPK) pathways, which is widely in-

volved in growth and differentiation of various types of cells

(Kolch, 2005; Silva and Smith, 2008; Ying et al., 2008). Inhibition

of ERK activity can promote mouse ESC self-renewal while

blocking differentiation by upregulation of core transcription

factors like NANOG and TBX3 (Lanner et al., 2010; Niwa et al.,

2009). Consistently, overexpression of activated H-Ras, which

augments ERK activity, can induce ESC differentiation into prim-

itive endoderm (Yoshida-Koide et al., 2004). Furthermore, ERK

activity was recognized as the trigger to induce ESC transition

from the self-renewal status into a state more sensitive to differ-

entiation cues (Kunath et al., 2007). The most striking evidence

highlighting the importance of ERK in ESC fate determination

is that mouse ESC pluripotency can be maintained by specific

small molecule inhibitors of ERK and glycogen synthase kinase 3

(GSK3) in the absence of serum or feeder cells (Ying et al., 2008).

Several extracellular cytokine-induced signaling pathways

such as leukemia inhibitory factor (LIF), transforming growth

factor b (TGF-b), and Wnt signaling have been demonstrated

to play critical roles in mouse ESC fate determination (Niwa

et al., 1998; Sato et al., 2004; Ying et al., 2003a). Among them,

functions of LIF and bone morphogenetic protein (BMP, a

member of TGF-b superfamily) as the most classic extrinsic

signals have been firmly established. LIF has been routinely

added into the culture medium to maintain mouse ESC pluripo-

tency mainly through activation of downstream STAT3 (Niwa

et al., 1998). In the absence of serum or feeder cells, mouse

ESCs can be maintained by LIF in combination with BMP4

(Ying et al., 2003a).

BMP transduces its signal by binding to its transmembrane

type I and type II receptor kinases, which then activate the intra-

cellular receptor-regulated Smad (R-Smad: Smad1, 5, and 8) by

phosphorylation. Activated R-Smads are then complexed with

co-Smad (Smad4) and together translocated into the nucleus

to regulate target gene expression (Datto and Wang, 2000;
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Feng and Derynck, 2005; Massagué and Chen, 2000; Massagué

et al., 2005; tenDijke andHill, 2004). Inmouse ESCs, BMPsignal-

ing can promote self-renewal by inhibition of differentiation

through a cohort of downstream targets like Id and other genes

(Fei et al., 2010a; Ying et al., 2003a). BMP has also been impli-

cated to function in various lineage commitments (Fei and

Chen, 2010; Seuntjens et al., 2009;Watabe andMiyazono, 2009).

Although ESC fate choices can be intricately determined by

these internal and external factors, how the two levels of regula-

tion are linked, in particular, how external BMP/LIF and internal

ERK is interconnected, in ESC fate decisions remains elusive.

In the present study, we report that BMP can steadily inhibit

ERK activity through induction of dual-specificity phosphatase 9

(DUSP9, also known as MKP-4). DUSP9, an ERK-specific phos-

phatase, is a member of the dual-specificity (threonine/tyrosine)

phosphatase superfamily, which can dephosphorylate and

thus decrease the activities of differential subsets of MAPKs

depending on their targeting preference (Jeffrey et al., 2007;

Patterson et al., 2009). We further show that DUSP9, as the

transcriptional target of BMP signaling, acts as a factor to link

extrinsic BMP stimulus to intrinsic ERK activity during ESC fate

determination.

RESULTS

BMP Inhibits ERK Activity in Mouse ESCs
In serum- and feeder-free culture, extrinsic signals from BMP

and LIF together sustainmouse ESC self-renewal whereas intrin-

sically ERK activity serves as the primary trigger to promote ESC

differentiation (Ying et al., 2003a, 2008). However, whether

extrinsic BMP and/or LIF signals coordinate with intrinsic ERK

activity is unclear. To address this question, we separately

treated R1 mouse ESCs with 10 ng/ml BMP4 or 10 ng/ml LIF

and then examined ERK activities by monitoring ERK phosphor-

ylation as the readout. As shown in Figure 1A, we found that

there was a slight increase of p-ERK1/2 level after BMP4 was

added for 2–4 hr, which was consistent with the previous report

by Ying et al. (2003a). However, when BMP4 treatment was

extended to 12 hr, ERK activity was significantly decreased.

Different from BMP4, LIF induced an immediate strong increase

of p-ERK1/2 level at 10 min, and when the treatment time was

prolonged, ERK activity was maintained at a steadily higher level

although not as strong as that at 10 min (Figure 1B). This is

consistent with the previous report that LIF has a stimulating

effect on ERK activity (Ying et al., 2003a). We further tested

whether BMP inhibition of ERK activity is dependent on LIF

signaling. Figure 1C showed that although ERK activity in the

presence of LIF was higher than that in the absence of LIF,

BMP could inhibit ERK phosphorylation in both contexts, indi-

cating that BMP inhibition of ERK activity is independent of LIF

signaling.

It has been shown that autocrine FGF4 is the major source

of stimuli to activate ERK in mouse ESCs (Kunath et al., 2007;

Stavridis et al., 2007). By use of FGF4 ligand and the FGF

receptor inhibitor SU5402, we found that BMP could also inhibit

FGF signaling-promoted ERK activity (Figure 1D). These data

strongly indicated that inhibition of ERK activity is a direct effect

of BMP signaling, but not indirectly through crosstalk with other

ERK-interfering signal cascades.
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To determine whether BMP inhibition of ERK activity was

specific across MAPK family, we examined the phosphorylation

levels of other two MAPK members (p38 and JNK) upon BMP

treatment and found that neither of themwas steadily decreased

(Figure S1A available online), indicating that the inhibitory effect

of BMP is specific to ERK. Consistent with the decrease of ERK

activity, the expression of ERK target genes was decreased

significantly upon BMP4 treatment (Figures 1E and S1B). This

is in accordance with the inhibitory effect of BMP on the ERK-

responsive luciferase reporter pFR-Luc/pFA2-Elk1 (Figure 1F).

We then asked whether BMP inhibition of ERK activity is specific

for ESCs. Two somatic mouse cell lines (primary mouse embry-

onic fibroblast [MEF] and NMuMG cells) were treated with

10 ng/ml BMP4, and ERK phosphorylation was examined. In

contrast to that in ESCs, ERK activity was not influenced by

BMP in these somatic cells (Figure S1C). Thus, our results

strongly indicated that BMP signaling inhibits ERK activity

specifically in ESCs.

BMP4 Specifically Upregulates DUSP9 in Mouse ESCs
We then tried to address the mechanism underlying the BMP-

mediated inhibition of ERK activity. Because ERK is directly acti-

vated by its upstream kinase MEK1, we first examined whether

BMP influences MEK1 activity. As shown in Figure S1A, the

phosphorylation level of MEK1 was unchanged by BMP4, indi-

cating that BMP inhibits ERK activity at the level downstream

of MEK1, possibly of ERK itself. As shown in Figure 1A, inhibition

of ERK phosphorylation became apparent only after 8 hr of

BMP4 treatment. This delayed inhibition led us to hypothesize

that BMPmay inhibit ERK activity through a transcription-depen-

dent mechanism. To determine whether BMP inhibition of ERK

needs de novo protein synthesis, we employed cycloheximide

(CHX) to block protein translation for 12 hr in the absence or

presence of BMP4 and then assessed ERK phosphorylation.

When protein synthesis was blocked by CHX, the ERK protein

levels were decreased (Figure 2A). However, ERK activity was

no longer reduced by BMP4, indicating that de novo protein

synthesis is required for BMP-mediated ERK inhibition.

Because BMP signaling regulates target gene expression

through the Smad pathway, we then searched for the possible

BMP/Smad target genes, which may account for ERK inhibition.

By scrutinizing the candidates identified in our previous work by

chromatin immunoprecipitation (ChIP) and ChIP-seq in mouse

ESCs (Fei et al., 2010a), we found that both Smad1/5 and

Smad4 bound to the promoter region of Dusp9 gene, which en-

codes a dual-specificity phosphatase with preference to target

ERK1/2 (Figure 2B; Jeffrey et al., 2007; Patterson et al., 2009).

Dusp9 gene also presented in the list of top BMP4-upregulated

genes in the previous expression array data (Figure 2C; Fei

et al., 2010a). That no other ERK-specific phosphatases were

found in the high-throughput data led us to speculate that

Dusp9 is the most promising candidate target to mediate BMP

inhibition of ERK.

By using quantitative RT-PCR, we observed a time-depen-

dent induction of Dusp9 mRNA by BMP4 in R1 ESCs (Fig-

ure 2D), and upregulation of DUSP9 protein was also confirmed

by immunoblotting (Figure 2E). To exclude the cell strain-

specific effect, we confirmed BMP upregulation of Dusp9 in

another mouse ESC line (E14 cells), and similar results were
.



Figure 1. BMP Inhibits ERK Activity in Mouse ESCs

(A) ERK activity is reduced in mouse ESCs upon BMP4 treatment for more than 6 hr. R1 cells cultured in N2B27medium overnight were treated with BMP4 for the

indicated time before being harvested for immunoblotting. Tubulin was used as a loading control.

(B) ERK activity is activated by LIF. R1 cells were treated with LIF for the indicated time before being harvested for immunoblotting.

(C) BMP inhibition of ERK activity is independent of LIF signaling. R1 cells were treated with BMP4 in the presence or absence of LIF before being harvested for

immunoblotting.

Levels of p-ERK1/2 were quantified in the lower panel of (A)–(C) and shown as mean ± SEM (n = 3).

(D) BMP inhibits FGF-enhanced ERK activity. R1 cells were treated with 25 ng/ml FGF4, 2 mM SU5402, or 10 ng/ml BMP4, as indicated, for 12 hr before being

harvested for immunoblotting. Ctrl, control; SU, SU5402; F4, FGF4.

(E) BMP inhibits ERK target gene expression in ESCs. R1 cells were treated with BMP4 before being harvested for qRT-PCR for Egr1 and Fos expression.

(F) ERK-responsive pFR-luc/pFA2-Elk1 luciferase reporter expression is reduced by BMP4. R1 cells transfected with pFR-luc, pFA2-Elk1, and pRenilla-TK

plasmids were treated with or without BMP4 for 24 hr before being harvested for luciferase assay.

Data are shown as mean ± SEM (n = 3) (**p < 0.01). See also Figure S1.
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obtained (Figures S2A and S2B), supporting the idea that

Dusp9 is a BMP target gene in mouse ESCs. Consistent with

our observation that BMP specifically inhibits ERK activity in

ESCs but not in somatic cells (Figures 1 and S1C), Dusp9

was not upregulated by BMP4 in primary MEF and NMuMG

cells, although the classic BMP target gene Id1 could be upre-

gulated in all these tested cells (Figures 2F and S2C–S2E). The

specific upregulation of DUSP9 by BMP4 was also evidenced

by the finding that activin A, another TGF-b superfamily

member, could not induce DUSP9 (Figure 2G). Furthermore,

we determined whether other DUSP family members with

ERK targeting activities could be upregulated upon BMP4

treatment. As shown in Figure 2H, among the DUSP family

members examined, only Dusp9 mRNA level was significantly

enhanced by BMP4. These data together indicated that BMP
Ce
signaling specifically upregulates the ERK-targeting phospha-

tase DUSP9 in mouse ESCs.

DUSP9 Mediates BMP Inhibition of ERK Activity
Because DUSP9 is known as an ERK-preferred phosphatase

(Jeffrey et al., 2007; Patterson et al., 2009; Theodosiou and

Ashworth, 2002) and BMP signaling can upregulate DUSP9

expression, we reasoned that DUSP9maymediate the inhibitory

function of BMP signaling on ERK activity. By overexpressing

wild-type DUSP9 in R1 cells, we found that ERK activity was

indeed attenuated in a dose-dependent manner (Figure 3A). In

accordance, the ERK target genes (Egr1 and Fos) were downre-

gulated by DUSP9 overexpression (Figure 3B).

Then we tried to confirm this with loss-of-function ap-

proaches. First, we employed a dominant-negative form of
ll Stem Cell 10, 171–182, February 3, 2012 ª2012 Elsevier Inc. 173



Figure 2. BMP4 Specifically Upregulates DUSP9 in Mouse ESCs

(A) New protein synthesis is required for BMP inhibition of ERK activity. R1 cells were treated with BMP4 for 12 hr in the presence or absence of 2 mg/ml CHX

before being harvested for immunoblotting. Tubulin was used as a control.

(B) Smad1/5 and Smad4 bind to the mouse Dusp9 promoter as identified by ChIP-seq. Green box indicates the binding signal peaks.

(C) Gene expression array heat map of BMP-upregulated genes upon BMP4 treatment for 4 hr in R1 cells. The signal change folds of gene probes are depicted.

(D and E) DUSP9 is upregulated by BMP4. R1 cells were treated with BMP4 and harvested for qRT-PCR for Dusp9 expression (D) or immunoblotting (E). Relative

mRNA levels are shown as mean ± SEM (n = 3).

(F) DUSP9 protein levels are not influenced by BMP4 inMEFs.MEFswere cultured in DMEMmedium plus 0.2%FBS overnight and then treatedwith BMP4 for the

indicated time before being harvested for immunoblotting.

(G) DUSP9 protein levels are not affected by activin A. R1 cells were treated with 25 ng/ml activin A before harvested for immunoblotting.

(H) Only DUSP9, but not other DUSPs, is induced by BMP4. R1 cells were treated with BMP4 for the indicated time before harvested for qRT-PCR. Data are

shown as mean ± SEM (n = 3).

See also Figure S2.
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DUSP9 (dn-DUSP9), in which the critical amino acid cysteine

within the catalytic site was mutated to serine (C358S) (Liu

et al., 2009; Matsuguchi et al., 2001; Rutter et al., 1995) to block

endogenous DUSP9 function. When dn-DUSP9 was expressed,

basal ERK activity was increased and the inhibition of ERK

activity by BMP4 was completely abolished (Figure 3C). Consis-

tently, at the target gene level, BMP4 could no longer repress

Egr1 and Fos expression when dn-DUSP9 was introduced (Fig-

ure 3D). Second, we tried to knock down Dusp9 by RNA interfer-

ence. Although it has been reported that ERK phosphorylation

does not always exhibit expected increase when DUSP9 expres-

sion was eliminated by knockdown or knockout because of

potential compensation or adaptation effects (Caunt et al.,

2008; Christie et al., 2005), we found that two specific small inter-

fering RNA (siRNA) oligos could effectively attenuate DUSP9

expression without significant compensation effects in R1

ESCs (Figure 3E and data not shown). As shown in Figure 3F,
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knockdown of Dusp9 enhanced the basal levels of ERK phos-

phorylation. Importantly, upon depletion of DUSP9, BMP could

not inhibit ERK phosphorylation. To further show the functional

specificity of DUSP9 in mediating BMP inhibition of ERK

activity, we knocked down another DUSP family member,

DUSP7, which was previously reported to be highly expressed

in mouse ESCs and contributed to ESC self-renewal mainte-

nance (Abujarour et al., 2010). Similar to DUSP9 knockdown,

DUSP7 knockdown enhanced the basal ERK phosphorylation,

but unlike DUSP9, DUSP7 knockdown did not interfere with

BMP inhibition of ERK activity (Figures 3E and 3F). Similar

results were also obtained in E14 mESCs (Figure S3). By using

immunostaining method, we also observed a reverse correlation

between DUSP9 expression and ERK phosphorylation level

upon BMP4 treatment (Figure 3G). Taken together, DUSP9

is an essential mediator of BMP inhibition of ERK activity in

mouse ESCs.
.



Figure 3. DUSP9 Mediates the Inhibitory Effect of BMP on ERK Activity

(A) Overexpression of DUSP9 inhibits ERK activity in a dose-dependent manner. R1 cells were transfected with different doses of DUSP9 and at 36 hr post-

transfection, cells were harvested for immunoblotting.

(B) Overexpression of DUSP9 inhibits ERK target gene expression. R1 cells were transfected with DUSP9 and then harvested at the indicated time for qRT-PCR

analysis.

(C) dn-DUSP9 abolishes the inhibitory effect of BMP on ERK activity. R1 cells were transfected with dn-DUSP9 or GFP. At 24 hr posttransfection, the cells were

treated with or without BMP4 for 12 hr before being harvested for immunoblotting.

(D) dn-DUSP9 eliminates BMP4 inhibition on expression of the ERK targets Egr1 and Fos. R1 cells were treated the same as in (C). Expression of Egr1 and Fos

were analyzed by qRT-PCR after BMP treatment for 24 hr.

(E) Dusp9 and Dusp7 are effectively knocked down by siRNA. R1 cells were transfected with siRNA against Dusp9 or Dusp7 as indicated. At 36 hr post-

transfection, cells were treated with or without BMP4 for 12 hr and then harvested for qRT-PCR.

(F) Knockdown of Dusp9, but not Dusp7, abolishes BMP4 inhibition of ERK activity. R1 cells were treated the same as in (E) and harvested for immunoblotting.

(G) Reverse correlation of p-ERK1/2 level and DUSP9 expression upon BMP4 treatment in R1 cells. Cells treated with or without BMP4 for 12 hr were

immunostained with the antibodies against p-ERK1/2 (green) and DUSP9 (red). The nucleus was counterstained with DAPI (blue). Scale bars represent 50 mm.

Data in (B), (D), and (E) are shown as mean ± SEM (n = 3) (*p < 0.05; **p < 0.01). See also Figure S3.
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BMP Upregulation of DUSP9 Is Smad Dependent
After establishing the functional significance of DUSP9 in medi-

ating BMP inhibition of ERK activity, we tried to elucidate the

mechanism by which BMP upregulates DUSP9 expression.

Because both Smad1/5 and Smad4 interact with the Dusp9

promoter in our ChIP-seq data (Figure 2B; Fei et al., 2010a),

we thus reasoned that BMP upregulation of DUSP9 requires

Smad signaling. By employing our previously established stable

Smad4 knockdown R1 ESCs (Fei et al., 2010a), we found that
Ce
Dusp9 mRNA was upregulated by BMP4 only in wild-type R1

cells, but not in Smad4 knockdown cells (Figure 4A). Similar

results were obtained at the protein level by immunoblotting

(Figure 4B). Furthermore, ERK activity was no longer inhibited

by BMP4 in Smad4 knockdown cells, indicating that BMP inhibi-

tion of ERK depends on Smad4 (Figure 4B). Upregulation of

Dusp9 mRNA also requires Smad1/5 as Smad1 knockdown

in Smad5�/� TC-1 mouse ESCs completely abolished Dusp9

induction by BMP4 (Figures 4C and S4A).
ll Stem Cell 10, 171–182, February 3, 2012 ª2012 Elsevier Inc. 175



Figure 4. Smad1/5 and Smad4 Are Required for BMP-Induced Expression of DUSP9

(A) Smad4 knockdown abolishes Dusp9 induction by BMP4. R1 cells stably expressing shRNA against luciferase (shLuc) or Smad4 (shSmad4) were treated with

BMP4 for 12 hr, and Dusp9 expression was examined by qRT-PCR.

(B) Smad4 knockdown abolishes DUSP9 protein upregulation and ERK inhibition mediated by BMP4. Control cells or Smad4 knockdown cells were treated with

BMP4 for 12 hr before being harvested for immunoblotting.

(C) Upregulation of Dusp9 mRNA by BMP4 depends on Smad1/5. Wild-type or Smad5�/� TC-1 mouse ESCs transfected with control or Smad1 shRNA were

treated with BMP4 for 12 hr before being harvested for qRT-PCR.

(D) A Smad-binding element in the Dusp9 promoter is essential for the transcriptional response of BMP4. R1 cells were transfected with the Dusp9 promoter

reporter constructs, treated with or without BMP4 for 24 hr, and harvested for luciferase activity determination. Schematic representation of promoter constructs

is shown on the left, and relative luciferase activities shown on the right.

(E) Smad1 and Smad4 specifically bind to the SBE2 region in theDusp9 promoter upon BMP4 treatment. ChIP assays were performedwith the antibodies against

Smad1 or Smad4 in R1 cells treated with or without BMP4 for 6 hr. The immunoprecipitated DNA was amplified by quantitative PCR with the primers detecting

specific promoter regions denoted in the upper panel.

(F) The SBE2 found in theDusp9 promoter is conserved across mammalian species. Yellow box indicates the conservative SBEmotif. The CCAGACT consensus

SBE motif was generated by WebLogo.

(G) DUSP9 is undetectable in Smad4�/� mouse embryos. Wild-type or Smad4�/� E3.5 mouse embryos were immunostained with the antibodies against Smad4

(green) and DUSP9 (red). DAPI counterstained the nucleus (blue). Scale bars represent 20 mm.

Data in (A) and (C)–(E) are shown as mean ± SEM (n = 3). See also Figure S4.
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To further investigate the transcriptional regulation of Dusp9

by the BMP/Smad signaling, the putative Dusp9 promoter

covering the upstream –2200 base pair (bp) to down-

stream +760 bp region around the transcriptional start site

(TSS) was cloned into pGL3 luciferase reporter plasmid.

Reporter assay revealed that this region responded well to

BMP4 in mouse ESCs (Figure 4D). To map the Smad-responsive

element, serial promoter truncations were generated to test for

BMP4 responsiveness. We found that the region of �370 bp

to �245 bp was the minimal responsive region for BMP4 (Fig-

ure 4D). By scrutinizing the minimal responsive 125 bp region,

two putative Smad binding elements (SBE) were found, desig-

nated as SBE1 and SBE2, respectively (Figure S4B). We then

generated single-nucleotide mutations within the two SBEs (Fig-

ure S4B) and analyzed their responsiveness to BMP4. Although
176 Cell Stem Cell 10, 171–182, February 3, 2012 ª2012 Elsevier Inc
SBE1 mutation had no effect, SBE2 mutation totally abolished

the responsiveness to BMP4 (Figure 4D). We further employed

ChIP assay to confirm the binding of Smads to the Dusp9

promoter. Five pairs of primers around SBE2 region with 1 kb

apart from each other were designed to amplify the Smad-

interacting DNA, and the results showed that both Smad1 and

Smad4 were recruited to the SBE2 region (primer 3) upon

BMP4 treatment (Figure 4E). In agreement with this, the SBE2

region was within the Smad1/5- and Smad4-enriched sequence

revealed by ChIP-seq analysis (Figure S4C; Fei et al., 2010a).

These results indicated that in mouse ESCs, BMP induces the

recruitment of Smad1/5 and Smad4 to the Dusp9 promoter

region and induces its expression.

Comparison of the putative Dusp9 promoter region (5000 bp

upstream of TSS) from several mammalian species uncovered
.
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the conserved SBE2 (CCAGACT) sequence in the Dusp9

promoter of these species (Figure 4F). This absolute conserva-

tion further signifies the importance of this transcriptional regula-

tion during evolution.

We also examined whether the BMP/Smad/DUSP9 axis exists

during early mouse embryonic development. We stained wild-

type and Smad4�/� E3.5 embryos with the antibodies specifi-

cally against Smad4 and DUSP9, respectively. As shown in

Figure 4G, DUSP9 expression was detected only in wild-type

but not in Smad4�/� embryos, indicating the importance of

BMP upregulation of DUSP9 during early mouse embryonic

development.

DUSP9 Can Substitute BMP4 to Sustain ESC
Self-Renewal in Combination with LIF
As reported previously, mouse ESCs could be maintained by LIF

plus BMP4, and withdrawal of BMP4 drove ESC differentiation

as shown by cell morphology and alkaline phosphatase (AP)

staining (Figure 5A). Because complete inhibition of ERK activity

by two or three inhibitors is sufficient to block ESC differentiation

(Ying et al., 2008), here we tried to assess whether decrease of

ERK activity could substitute BMP4 to maintain ESC self-

renewal. Toward this purpose, MEK1 inhibitor PD184352 and

FGF receptor inhibitor SU5402 were separately used. Either

inhibitor could efficiently inhibit ERK activity in mouse ESCs to

an extent similar to BMP4 treatment (Figures S5A and S5B).

When PD184352 or SU5402 was added in combination with

LIF, ESCs could be effectively maintained in undifferentiated

state (Figure 5A), phenocopying those under the LIF plus

BMP4 condition.

We further characterized the cell fates by determining the

expression of several pluripotency markers—Pou5f1 (Oct4),

Nanog, and Rex1. Consistent with the cell morphology and AP

staining results, the expression of these markers, especially of

Nanog and Rex1, were significantly decreased upon BMP4with-

drawal, and either PD184352 or SU5402 could substitute BMP4

to sustain their expression (Figure 5B). The inert response of

Oct4 to BMP4 withdrawal may be attributed to the strong differ-

entiation-inhibitory effect of LIF, as evidenced by that Oct4

decreased significantly when both BMP4 and LIF were deprived

(Figure 5B). Thus, ERK inhibition could substitute BMP4 to main-

tain mouse ESC self-renewal in combination with LIF.

We then tested whether DUSP9 overexpression can mimic

BMP signaling to sustain mouse ESC self-renewal. Forced

expression of DUSP9 could indeed replace BMP4 in maintaining

self-renewal, as demonstrated by positive AP staining and

expression of NANOG and Rex1 (Figures 5C and 5D). We also

employed a lentiviral system to stably express DUSP9 in R1

ESCs with GFP as a control. Similar to transient transfection,

stably expressed DUSP9 could maintain ERK activity at lower

level compared to GFP control and substitute BMP4 to sustain

self-renewal together with LIF as evidenced by self-renewal

marker expression, AP staining, and colony formation assay

(Figures S5C–S5F). Conversely, DUSP9 knockdown by siRNA

oligos decreased self-renewal marker gene expression under

BMP4+LIF condition (Figure 5E), indicating the requirement of

DUSP9 for the self-renewal maintenance downstream of

BMP4. Consistently, stable expression of dn-DUSP9 signifi-

cantly compromised mouse ESC self-renewal in terms of self-
Ce
renewal maker expression and cell morphology (Figures 5F,

S5G, and S5H). Thus, DUSP9 is an essential mediator of BMP

signaling to sustain mouse ESC self-renewal in collaboration

with LIF. It has been showed that simultaneous inhibition

of ERK and GSK3 activity by small molecule inhibitors

PD0325901 and CHIR99021 (2i condition) can sustain ESC

self-renewal (Ying et al., 2008). In the 2i condition or standard

knockout serum replacement (KSR) containing ESC culture

medium, however, DUSP9 knockdown had little effect on self-

renewal (Figures S5I and S5J), indicating that DUSP9 is specific

to mediate BMP-supported self-renewal function.

DUSP9 Contributes to BMP Inhibition of Early Neural
Differentiation
When deprived of both LIF and BMP4, mouse ESCs automati-

cally undergo early neural differentiation, and BMP signaling

can repress this neural differentiation (Fei et al., 2010a; Ying

et al., 2003b). Thus, we employed this system to further assess

the significance of the BMP/DUSP9/ERK axis in mouse ESC

fate determination.

Consistent with previous reports, BMP4 effectively inhibited

the expression of neural progenitor markers—Sox1,Nes (nestin),

and Sox3 (Figure 6A). Inhibition of ERK activity by PD184352 or

SU5402 yielded similar effects (Figures 6A, S6A, and S6B).

These data suggest that BMP blockage of early neural differen-

tiation may be partially through ERK inhibition. Indeed, DUSP9

overexpression led to efficient repression of the early neural

markers (Figures 6B and 6C). In accordance, when dn-DUSP9

was introduced to block endogenous DUSP9 activity, the extent

of BMP inhibition on the expression of Sox1, nestin, and Sox3

were alleviated significantly (Figure 6D). DUSP9 knockdown by

siRNA also impaired BMP4-mediated repression of neural differ-

entiation as evidenced by neural marker gene expression and

cell morphology (Figures 6E, S6C, and S6D). These results

together suggest that DUSP9 contributes to the function of

BMP in repression of early neural differentiation.

DISCUSSION

Extrinsic BMP and LIF signals cooperate to sustain mouse ESC

self-renewal while intrinsic ERK activity primes for differentiation.

How these two cytokines interact with each other to regulate

self-renewal has not been clearly addressed. LIF is widely re-

garded as a major self-renewal regulator by activating STAT3

to inhibit differentiation while paradoxically LIF through its

receptor gp130 can also activate ERK (Burdon et al., 1999;

Niwa et al., 1998). BMP signaling was previously identified as

a critical LIF collaborator to maintain self-renewal by upregulat-

ing ID family proteins and thus inhibiting neural differentiation

(Ying et al., 2003a). Our recent study extended this notion by

showing that BMP/Smad signaling promotes self-renewal also

via suppression of developmental regulators’ expression (Fei

et al., 2010a). In the present study, we found that BMP can inhibit

ERK activity through induction of the ERK-specific phosphatase

DUSP9.

ERK has been documented to be a key ESC fate regulator

(Kunath et al., 2007; Stavridis et al., 2007; Yoshida-Koide et al.,

2004). Appropriate ERK activity is important for compromising

the pluripotency and limiting ESC proliferation potential, with
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Figure 5. DUSP9 Mediates BMP4 Function to Sustain Mouse ESC Self-Renewal in the Presence of LIF

(A) Inhibition of ERK activity can substitute BMP4 in maintaining ESC self-renewal in the presence of LIF. R1 cells were cultured in N2B27medium supplemented

with LIF (10 ng/ml), BMP4 (10 ng/ml), PD184352 (1 mM), or SU5402 (2 mM) as indicated for 5 days and subjected to alkaline phosphatase (AP) staining. Arrows

indicated the differentiated cells.

(B) In the presence of LIF, inhibition of ERK activity can substitute BMP4 in maintaining pluripotency marker gene expression. R1 cells were cultured in the

conditions as described in (A) before being harvested for qRT-PCR.

(C) DUSP9 overexpression can substitute BMP4 in sustaining ESC self-renewal in collaboration with LIF. R1 cells were transfected with DUSP9 construct and

cultured in N2B27 medium supplemented with LIF and/or BMP4 as indicated for 5 days before being subjected to AP staining or immunostaining.

(D) In the presence of LIF, DUSP9 overexpression can substitute BMP4 in maintaining pluripotency marker gene expression. R1 cells were cultured in the

conditions as in (C) before being harvested for qRT-PCR.

(E) Knockdown of Dusp9 impairs self-renewal marker gene expression in mouse ESCs cultured in LIF+BMP4 condition. R1 cells cultured in LIF+KSR or

LIF+BMP4 conditions were transfected with siRNA as indicated and cells were harvested for qRT-PCR after 5 days.

(F) Ectopic expression of dn-DUSP9 reduces self-renewal marker gene expression in mouse ESCs cultured in LIF+BMP4 condition. R1 cells stably expressing

GFP as a control (Lv-GFP) or expressing dn-DUSP9 (Lv-dn-DUSP9) were cultured in LIF+BMP4 condition for 6 days and then harvested for qRT-PCR.

Scale bars in (A) and (C) represent 100 mm. Data in (B) and (D)–(F) are shown as mean ± SEM (n = 3) (**p < 0.01). See also Figure S5.

Cell Stem Cell

DUSP9 Mediates BMP Inhibition of ERK in mESCs
higher activity to promote differentiation and lower activity to

restrict it. Both exogenously added LIF and autocrine FGF

signaling can activate ERK. However, the signaling to negatively

regulate ERK activity remains unclear. We found that BMP can
178 Cell Stem Cell 10, 171–182, February 3, 2012 ª2012 Elsevier Inc
counteract the stimulating effect of LIF and FGF signaling on

ERK activity, thereby maintaining mouse ESCs in the self-

renewal state with an appropriate ERK activity in the presence

of both LIF and BMP4. Mechanistically, the inhibitory effect of
.



Figure 6. DUSP9 Contributes to BMP-Mediated Inhibition of Early Neural Differentiation of mESCs

(A) Inhibition of ERK activity by PD184352 mimics the inhibitory effect of BMP4 on early neural differentiation. R1 cells cultured in neural differentiation condition

(N2B27 medium without growth factors) supplemented with or without 10 ng/ml BMP4 or 1 mM PD184352 for 5 days before being harvested for qRT-PCR.

(B) DUSP9 overexpressionmimics the inhibitory effect of BMP4 on early neural differentiation. R1 cells transfected with plasmids expressing DUSP9 or GFPwere

cultured in N2B27 medium for 5 days before being harvested for qRT-PCR.

(C) DUSP9 overexpression mimics BMP4 in inhibiting nestin expression. R1 cells transfected with or without DUSP9 were cultured in N2B27 medium with or

without BMP4 for 5 days and subjected to anti-nestin immunostaining. Scale bars represent 100 mm.

(D) dn-DUSP9 attenuates the inhibitory effect of BMP on neural differentiation. R1 cells transfected with dn-DUSP9 or GFP construct were cultured in N2B27

medium with or without BMP4 for 5 days and then harvested for qRT-PCR. BMP4 neural inhibition rate (+BMP4/�BMP4) was calculated by division of the mRNA

levels in the presence of BMP4 to the ones in the absence of BMP4 (n = 3) (*p < 0.05; **p < 0.01).

(E) Knockdown of Dusp9 impairs the inhibitory effect of BMP4 on early neural differentiation of ESCs. R1 cells cultured in standard KSR-containing ESCmedium

or N2B27 medium with or without BMP4 were transfected with siRNA as indicated. Cells were harvested for qRT-PCR after 5 days.

(F) Schematic model for the function of DUSP9 in mediating BMP signaling to control ERK activity during mouse ESC fate determination.

Data in (A), (B), (D), and (E) are shown as mean ± SEM (n = 3) (**p < 0.01). See also Figure S6.
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BMP on ERK is via Smad-dependent upregulation of DUSP9.

Thus, by identification of DUSP9 as an important BMP target,

we establish the link between BMP signaling and regulation of

ERK activity during mouse ESC fate determination.

Several previous studies have suggested the link between

BMP signaling and MAPK activities (Qi et al., 2004; Ying et al.,

2003a, 2008; Zhang et al., 2010). Ying et al. (2003a) reported

that BMP4 can slightly activate ERK activity within a short time
Ce
period (15 min and 1 hr), which is consistent with our data. It

has been shown that BMP signaling may support mouse ESC

self-renewal by inhibition of MAPK pathways, in which ERK

activity was only transiently repressed in 5 min and then

completely recovered at 1 hr, whereas p38 seemed more sensi-

tive to BMP inhibition within 1 hr (Qi et al., 2004). A recent report

also indicated that BMP signaling can inhibit ERK phosphoryla-

tion within 10 min (Zhang et al., 2010). Despite these indications,
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the exact link between BMP signaling and ERK activity has not

been firmly established. We carefully monitored the BMP effects

on ERK activity in a long time course and found that BMP slightly

activates ERK within 4 hr but causes a steady inhibition of ERK

after 8 hr and beyond. Because BMP is constantly included in

the LIF+BMP protocol to culture mouse ESCs, our results should

reflect the most actual effect of BMP on ERK activity in mouse

ESCs.

The slow responsiveness of ERK to BMP4 treatment led us to

speculate that BMP signaling represses ERK activation through

gene transcription. Consistent with this notion, de novo protein

synthesis was required for the inhibitory effect of BMP on ERK

activity, and the ERK-specific phosphatase DUSP9 was among

the potential targets of BMP/Smad signaling (Fei et al., 2010a).

DUSPs negatively modulateMAPK activities by dephosphorylat-

ing serine/threonine and tyrosine residues. Different DUSPs have

distinct expression pattern, substrate selectivity, and biological

functions (Jeffrey et al., 2007; Patterson et al., 2009; Theodosiou

and Ashworth, 2002). Our data showed that only DUSP9 exhibits

specific upregulation by BMP signaling in mouse ESCs, and

more importantly, inhibition of endogenous DUSP9 activity effi-

ciently blocks the BMP suppression of ERK activity, placing

DUSP9 as a crucial mediator of BMP signaling to interfere with

ERK activity. Further detailed analysis firmly established that

Smad1/5 and Smad4 are responsible for BMP upregulation of

Dusp9.

We have also demonstrated that DUSP9 can mediate BMP

function in mouse ESC fate determination through inhibition of

ERK. First, by employing the BMP4+LIF self-renewal mainte-

nance system, we found that inhibition of ERK activity by

DUSP9 overexpression, like the MEK1 inhibitor PD184352 or

the FGF receptor inhibitor SU5402, can substitute BMP4 to

support self-renewal in the presence of LIF. Loss-of-function

experiments by dn-DUSP9 and DUSP9 knockdown also indi-

cated that DUSP9 is necessary for BMP-sustained self-renewal

in cooperation with LIF. Second, in an early neural differentiation

system without LIF, BMP treatment and loss-of-function of ERK

attenuated early neural differentiation, as reported previously

(Fei et al., 2010a; Kunath et al., 2007; Stavridis et al., 2007;

Ying et al., 2003b). Overexpression of DUSP9 could interfere

with this differentiation process. Furthermore, the decrease of

early neural markers was significantly alleviated by dn-DUSP9

and DUSP9 knockdown, indicating the important role of

DUSP9 inmediating BMP inhibition of early neural differentiation.

ID proteins can partially substitute BMP4 to inhibit neural differ-

entiation (Zhang et al., 2010), and suppression of differentiation

genes also contributes to BMP promotion of self-renewal (Fei

et al., 2010a). Thus, multiple targets may work together to

mediate BMP function to promote self-renewal and inhibit differ-

entiation of mouse ESCs.

We also tried to extend our findings to human ESCs. Consis-

tent with that in mouse ESCs, BMP4 can upregulate Dusp9

expression in the protein level (Figure S6E) as well as in the

mRNA level in both H1 hESCs (Figure S6F) and H9 hESCs (Fig-

ure S6G). Similarly, BMP4 can still inhibit ERK phosphorylation

in H1 human ESCs (Figure S6E). Thus, the BMP-ERK connection

and BMP4 upregulation of DUSP9 are conserved in human

ESCs. However, the functional output of BMP signaling and

ERK signaling were in great contrast between human andmouse
180 Cell Stem Cell 10, 171–182, February 3, 2012 ª2012 Elsevier Inc
ESCs (Bernardo et al., 2011; Li et al., 2007; Xu et al., 2002; Ying

et al., 2003a, 2008). Further efforts are required to clarify whether

DUSP9 functionally connects BMP signaling and ERK pathway

in human ESC fate determination.

The correlated expression pattern of Smad4 and DUSP9

during early embryonic development suggested certain physio-

logical significance of the BMP/Smad/DUSP9 axis. Dusp9�/�

mice showed lethality around E10.5 resulting from defective

extraembryonic tissue development (Christie et al., 2005), which

is similar to that of Erk2�/� mice (Hatano et al., 2003). Interest-

ingly, although Smad4�/� mice die at around E6.5–E8.5, earlier

than Dusp9�/� mice, they also exhibit disordered extraembry-

onic tissue development (Sirard et al., 1998; Yang et al., 1998).

These genetic studies strongly suggested that the BMP/Smad/

DUSP9 cascade and ERK are interconnected to regulate embry-

onic development.

In summary, our present study firmly establishes that DUSP9,

as a critical direct target of BMP/Smad signaling, plays a critical

role in mediating BMP functions during mouse ESC fate deci-

sions by inhibition of ERK activity. The elucidation of how

extrinsic BMP signaling interacts with the critical intrinsic cell

fate calibrator ERK provides insight into a better understanding

of delicate ESC fate determination.

EXPERIMENTAL PROCEDURES

Cell Culture, Reagents, and Antibodies

R1 and E14 mouse ESCs were maintained as described previously (Fei et al.,

2010b). For serum- and feeder-free culture, cells were grown on gelatinized

tissue culture plates in N2B27 medium (Ying et al., 2003a) with LIF (Chemicon)

and/or BMP4 (R&D Systems) in concentration of 10 ng/ml, unless specified in

the figure legends. For early neural differentiation, R1 cells were cultured in

N2B27 medium without any other cytokines as described previously (Fei

et al., 2010a). The 2i culture condition for mouse ESCs, the culture conditions

for mouse somatic cell lines, H1 and H9 human ESC lines, and reagents and

antibodies are described in Supplemental Information. Mice manipulations

followed the protocols approved by the Tsinghua Animal Ethics Committee.

Lentiviral Transduction

The coding sequences (CDS) of GFP, GFP-DUSP9, or GFP-dn-DUSP9 were

cloned into pENTR1A plasmid and LR clonase reactions (Invitrogen) were

carried out to place these CDS under the control of EF1a promoter in the

p2k7neo lentiviral backbone (gift from Dr. Kehkooi Kee) (Kee et al., 2009). The

viral supernatants were used to infect mouse ESCs. Geneticin (250 mg/ml, In-

vitrogen) was added into culture medium for 5 days to select cells with stable

viral integration.

Knockdown by siRNA

siRNA were purchased from GenePharma (Shanghai). siRNA (100–200 nM)

were transfected into mouse ESCs with DharmaFECT1 (Dharmacon) accord-

ing to the manufacturer’s instruction. siRNAs were transfected every 2 days in

long-term functional assays to ensure efficient knockdown of target genes.

siRNA sequences were listed in the Supplemental Information.

Immunoblotting, Immunostaining, Luciferase Reporter Assay, RNA

Isolation, Reverse Transcription, and qRT-PCR

Tests performed as described previously (Fei et al., 2010a). Detailed protocol

described in Supplemental Information.

Secondary Colony Formation Assay and Alkaline Phosphatase

Staining

Secondary colony formation assay was performed as previously described

(Yuan et al., 2009). Alkaline phosphatase staining was performed according
.
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to the manufacturer’s instructions (SCR004, Millipore). Detailed protocol

described in Supplemental Information.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) assay was carried out as described

previously (Fei et al., 2010a). Detailed protocol and specific PCR primers for

ChIP are described in Supplemental Information.

Statistic Analysis

All the values were shown as mean ± SEM. The significance between groups

was determined by Student’s t test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at doi:10.1016/

j.stem.2011.12.016.
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