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LncRNAs: the missing link to senescence
nuclear architecture
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Highlights
Nuclear morphology changes during se-
nescence and may potentially underlie
other molecular changes.

LncRNAs play architectural roles in the
nucleus and change in abundance dur-
ing aging and senescence.

RNA-dsDNA base pairing facilitates
aging-associated lncRNAs in their inter-
actions with nuclear proteins and DNAs.

A future direction is to combine artificial
intelligence and CRISPR to directly fine-
During cellular senescence and organismal aging, cells display various molecu-
lar and morphological changes. Although many aging-related long noncoding
RNAs (lncRNAs) are highly associated with senescence-associated secretory
phenotype, the roles of lncRNAs in senescence-associated nuclear architecture
and morphological changes are just starting to emerge. Here I review lncRNAs
associated with nuclear structure establishment and maintenance, their aging-
related changes, and then focus on the pervasive, yet underappreciated, role
of RNA double-strand DNA triplexes for lncRNAs to recognize targeted genomic
regions, making lncRNAs the nexus between DNA and proteins to regulate
nuclear structural changes. Finally, I discuss the future of deciphering direct links
of lncRNA changes to various nuclear morphology changes assisted by artificial
intelligence and genetic perturbations.
map lncRNAs’ roles in nuclear architec-
ture during aging.
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Long noncoding RNAs (lncRNAs) in aging at a glance
It is now well established that cellular senescence is a causal event of organismal aging and that
genetic, chemical, or immune clearance of senescent cells enhances overall health and extends
lifespan in mice [1–6]. In addition to permanent cell cycle arrest, the most prominent features of
cellular senescence are progressively and dramatically increased inflammatory cytokine secretion,
termed senescence-associated secretory phenotype (SASP; see Glossary) [7–9], con-
tributing to inflammaging at the organismal level [10–12]. The second most common but very
early event is the formation of H3K9 trimethylation (H3K9me3) foci in the nucleus, which are
called senescence-associated heterochromatin foci (SAHF) [13–15]. These two events
are not isolated; rather, one enhances the other.

The majority of lncRNAs are transcribed at low levels and are less evolutionarily conserved than
coding genes. However, those that are highly expressed are often evolutionarily conserved in
sequence and potentially conserved in function; in particular, the aging-related expressed lncRNAs
compared with non-aging-related lncRNAs are more evolutionarily conserved and potentially more
functionally conserved [16]. A large fraction of the aging upregulated lncRNAs are regulated by
inflammatory response, such that the NF-κB binding motif is a top enriched transcription factor
binding motif on these lncRNAs, and a significant number of them also feed back to regulate
NF-κB signaling and inflammaging [16–19]. Blocking these lncRNAs through dampening SASPs
can serve as ‘senomorphics’ to mitigate the contagiousness of cellular senescence. These regula-
tory element-associated lncRNAs have relatively low abundance and tend to go up with stress and
aging to promote SASP [16], whereas architectural lncRNAs are usually very long and, when
induced or repressed with stress and aging, disrupt nuclear architectures and in turn lead to
impaired cellular homeostasis and functions. In the following section, I summarize the changes of
nuclear structures during aging and senescence, focusing on the lncRNAs reported to associate
with these processes, followed by a specific and perhaps prevalent mechanism of lncRNAs in
regulating one particular nuclear architecture, the RNA-DNA triplexes.
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Glossary
Alu: a type of long interspersed
repetitive DNA elements in the primate
genome, similar to the B1 elements in
rodents.
Architectural lncRNAs: lncRNAs
involved in forming or maintaining
nuclear structures.
ChIRP: chromatin isolation by RNA
purification, a technique to detect
double-strand chromatin DNAs that
interact with an RNA.
Chromatin compartments and
TADs: frequently contacting or
interacting chromatin regions revealed
chromosomal conformation capture
techniques, such as Hi-C analysis. TADs
are topologically associated domains
and are relatively smaller and enclosed in
much larger compartments, with A
compartments in active chromatin state
and B compartments in repressive
states.
CLIP-seq: cross-linking
immunoprecipitation followed by
high-throughput sequencing is a
method used to detect RNA targets of
RNA-binding proteins.
Hi-C: high-throughput chromosome
conformation capture technique to map
long-distance interactions between
chromosomal DNAs.
L1: a type of long interspersed repetitive
DNA elements in mammalian genomes.
Among them, the youngest subfamily
still encodes transposases, enabling L1
and Alu elements to make new
insertions in the genome.
Lamina-associated domains
(LADs): large genomic domains
identified by LMNB1 DNA adenine
methyltransferase identification (DamID)
or chromatin immunoprecipitation (ChIP).
Long noncoding RNA (lncRNA): refer
to >200-bp longRNA that has no coding
potential.
Nuclear envelope: the double
membrane separating the nucleus from
the cytoplasm disrupted by nuclear
pores. The interior side of nuclear
envelope is coated by the lamin matrix.
Nuclear lamina: the structural
meshwork underlining the inner surface
of nucleus. The major protein
components of the nuclear lamina
are intermediate filament proteins lamin
A/C and B, among which lamin B1
(LMNB1) is exclusively localized to
nuclear lamina.
Nuclear speckles: membraneless
condensates in the nucleus formed by
serine/arginine-rich (SR) splicing factors
LncRNAs associated with nuclear morphology and structural changes in aging
and senescence
Compared with SASP, less well studied are the nuclear morphological changes during cellular
senescence; yet, they are equally prominent and often start very early and incrementally progress
during the course of senescence [20]. In fact, just like the human face [21,22] and brain morphol-
ogy [23,24] are reliable biological age markers, nuclear morphology can be a reliable biomarker
of aging and cellular senescence. Especially now with deep neural network technologies, the
accuracy of recognizing a senescent cell by morphology can reach 100% [25] or near 100%
[26], exceeding any other known senescence or aging biomarkers. This concurs with the notion
that structure as the foundation, together with function and regulation, are the three essential and
hierarchical components of a living system [27]. Structure or form enables function, which in turn
enables regulation and fine-tuning. They are hierarchically established during development follow-
ing that order and often deteriorate in the reverse order during degeneration and aging toward
irreversibility. Below I describe different aging- and senescence-associatedmorphological changes
of the nucleus and lncRNAs involved with these processes, if known.

Nuclear envelope
During aging and senescence, nuclear envelope ruffles and sheds nuclear DNA into cytoplasm
(cytoplasmic chromatin fragments), all of which can be induced by the gradual loss of the lamin
matrix in senescent cells [28]. XIST [29] and KCNQ1OT1 [30,31] are two of the lncRNAs known
to be localized to nuclear periphery and are essential in tethering their target chromosomes or
genomic regions to nuclear lamina (Figure 1). KCNQ1OT1 reduction induces senescence
through activation of transposon elements (TEs) and likely their detachment of TEs from nuclear
lamina [32].

Nucleolus
During aging and senescence, the nucleolus progressively increases in size and is a reliable
biomarker for aging in many model organisms and humans and is even predictive of lifespan
in Caenorhabditis elegans [33]. In human and mouse cells, overexpression and depletion of
transcripts of Alu/B1 repeat elements increases and decreases nucleolus size, respectively
[34]. Many nucleolus-localized, rDNA loci-generated lncRNAs have been shown to be upregu-
lated by various but specific stresses and to change the rDNA loci in cis to a repressive state.
These include the rDNA promoter-associated RNA (pRNA) [35], promoter and preRNA antisense
(PAPAS) [36], and the intergenic spacer RNAs [37]. Additionally, the rDNA loci-associated
snoRNA containing lncRNA LoNA, which inhibits ribosome biogenesis, is upregulated in an
Alzheimer’s disease mouse model and decreased by neuronal activity, and its reduction can
rescue learning deficiency in these mice [38]. SLERT is another snoRNA containing lncRNA
that regulates the open and closed state of nucleolus protein DDX21 and phase separation within
the nucleolus, and thus the size of the nucleolus [39,40]. X-linked lncRNA Firre has also been
shown to anchor the inactivated X chromosome to the nucleolus periphery [41], organize inter-
chromosomal interactions, and form nuclear foci by binding to nuclear matrix protein hnRNPU
in mouse embryonic stem cells [42]. However, whether SLERT or Firre changes or functions in
stress response or aging has not been explored. Other than the lncRNAs that regulate ribosome
biogenesis, as noted previously, lncRNA KCNQ1OT1 has also been shown to localize to the
nucleolus periphery in addition to the nuclear periphery [30,31] (Figure 1).

Nuclear speckles
The abundant lncRNA MALAT1 forms the scaffold of nuclear speckles. A recent study using
super-resolution imaging finds that the concatenated m6A residues on MALAT1 form a scaffold
to recruit m6A reader YTH-domain-containing protein 1 (YTHDC1) to nuclear speckles and that
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Figure 1. Typical nuclear morphology changes during aging and cellular senescence are often associated with
changes in architectural long noncoding RNAs (lncRNAs). These include the increase of NEAT1 in paraspeckles; the
decrease of MALAT1 in nuclear speckles; the increase in various rDNA triplex-forming lncRNAs in the nucleolus upon stress;
the loss of KCNQ1OT1, which results in the detachment of its triplex forming transposon element (TE) DNAs from
heterochromatic lamin-associated domains (LADs) and nucleolus-associated domains (NADs); and derepression of
evolutionarily young transposon elements. No lncRNA has yet been shown to localize to the senescence-associated
heterochromatic foci (SAHF). Aging-upregulated lncRNAs are mostly regulatory lncRNAs, regulated by and regulate
senescence-associated secretory phenotypes (SASPs). In senescent cells, the TE transcripts increase dramatically, and
overexpression of Alu elements results in increased nucleolus size. Although the precise subnuclear localization of the TE
transcripts are largely unknown, KCNQ1OT1 that binds and suppresses TEs is associated with nuclear actin filament
proteins.
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attached to the abundant lncRNA
MALAT1.
Nucleolus: the ribosomal RNAs and
several lncRNAs targeting the ribosomal
DNAs together with the RNA binding
proteins form the basis of this
membraneless organelle within the
nucleus, which is the site of ribosome
biogenesis.
Nucleolus-associated domains
(NADs): genomic domains identified by
nucleolus fractionation followed by
sequencing, composed of the
centromeric satellite repetitive
sequences in constitutive
heterochromatic state.
Paraspeckles: membraneless
condensates in the nucleus formed by
transcripts of the lncRNA NEAT1
(nuclear paraspeckle assembly
transcript 1), which sequester more than
40 paraspeckles proteins, including
DBHS (Drosophila behavior human
splicing) family of nuclear factors,
NONO, SFPQ, and PSPC1.
RNA-dsDNA Hoogsteen base
pairing: a type of noncanonical base
pairing that occurs between anRNA and
dsDNA, which involves the formation of
hydrogen bonds between the purine
base (adenine or guanine) of one nucle-
otide and the Watson–Crick face of
another purine base.
Senescence-associated
heterochromatin foci (SAHF): H3K9
trimethylation (H3K9me3) foci in the
nucleus early in senescence.
Senescence-associated secretory
phenotype (SASP): increased
inflammatory cytokine secretion by
senescent cells that contribute to
inflammaging.
Transposon elements (TEs): mobile
repetitive elements in the genome.
the recognition of MALAT1-m6A by YTHDC1 is essential to maintain the genomic binding sites of
nuclear speckles [43]. Consistent with its role in splicing, MALAT1 has been shown to bind
pervasively to active chromatin [44]. MALAT1 expression is known to decrease during WI-38
fibroblast senescence, and artificially reducing its level induces senescence [45] (Figure 1).
Interestingly, MALAT1 translocates to a distinct nuclear body named the heat shock-inducible
noncoding RNA-containing nuclear body in mammalian cells upon heat shock stress [46].

Paraspeckles
Similar toMALAT1, as the backbone ofparaspeckles, NEAT1 also directly binds active chromatin
[44]. NEAT1 paraspeckles are upregulated in neuronal stress response [47,48] and upon virus
infection [49]. NEAT1 RNA increases during brain aging and compromises memory and other
brain functions [50] (Figure 1) and has been found to be a marker of frailty at the single-cell level
in human blood [51]. NEAT1 has also been reported to be required for the formation of stress-
induced TDP43 nuclear bodies and phase separation [52].

Chromatin compartments
Chromatin is organized into A/B compartmentalization and topologically associating domains
(TADs) hierarchically at multimegabase and hundreds of kilobases scales, respectively [53,54].
During cellular senescence, the 3D genome is rearranged with both TAD fusion and fission and
stronger long-distance interactions [13,55–57]. However, during late senescence, there is a gain
of short-distance interactions and a loss of long-distance interactions [58]. The loss of HMGB2
very early in senescence induces CTCF clustering and rearrangement of TAD boundaries [57].
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TADs also allow the segregation of senescence activated and inactivated enhancers to be sepa-
rately targeted by bZIP (e.g., C/EBP) transcription factors and basic helix-loop-helix (e.g., TCF21)
transcription factors, respectively [55]. During senescence, the B-to-A compartment switch
enriches for SASP gene enhancers [55], consistent with the frequent aging upregulation of SASP
enhancer RNAs [16].

Lamina-associated domains (LADs)
LADs are often in B compartments and largely marked by repressive chromatin marks, in partic-
ular H3K9me2/3 [59]. Artificial depletion of LMNB1 in mouse embryonic stem cells induces LAD
disassociation from the nuclear periphery [60,61]. During fibroblast cell senescence, LMNB1
globally decreases, and LMNB1 binding to LAD is reduced, whereas knocking down LMNB1
cooperatively with overexpression of HMGA1/2 induces the formation heterochromatin foci in
the nucleus [62] (Figure 1).

Senescence-associated heterochromatin foci (SAHF)
SAHF often contain DNA sequences from both coding regions and noncoding regions and bear
heterochromatin marks such as H3K9me3 and HP1 proteins [13–15] (Figure 1). The high-mobility
group A (HMGA) proteins, such as HMGA1/2, accumulate on the chromatin of senescent fibro-
blasts and as essential structural components of SAHFs and cooperate with p16 to promote
SAHF formation [62,63]. Similar to lamin B1 knockdown [62], knocking down lncRNA KCNQ1OT1
induces the formation of SAHFs [32]. However, so far, it is not known whether lncRNAs exist inside
SAHFs.

Nucleolus-associated domains (NADs)
NADs are composed of centromeric satellite repetitive sequences in constitutive heterochro-
matic state. Unlike LADs, whose tethering mechanisms to the nuclear lamina are well studied,
little is known about the tethering mechanism of NADs to the nucleolus periphery [64]. During
cellular senescence, it seems to be the first change at the chromatin level, starting with early
opening and becoming continuously more open and exposed with the progression of senes-
cence [65,66]. Consistently, distension of satellite heterochromatins occurs earlier and more
commonly than SAHF [67].

Nuclear actin skeleton
Like the cytoplasmic actin network being responsible for the shape of the cell, the nuclear actin
skeleton is at least partially responsible for the shape of the nucleus. During mitotic exit, inhibiting
nuclear actin polymerization impairs the cell size increase and chromatin decondensation and
renders unstructured nuclear surface morphology independent of actin-nucleating ARP2/3
complex [68]. Nuclear actin has been shown to be required for efficient Pol II transcription by
promoting phase-separated transcription factories. In this case, the nascent transcripts are
part of these phase-separated droplets [69]. Although during double-strand DNA break the
nuclear ARP2/3 drives the clustering of the damaged DNA for homology-directed repair [70].
Actins also associate with heterochromatins and relocalize damaged heterochromatic DNA
breaks for repair [71,72]. Consistent with these observations, RNA pulldown followed by mass
spectrometry analyses found that the KCNQ1OT1 lncRNA, a guardian against transposon
derepression and genome instability, associates with actin filament proteins and DNA repair
complexes through its 5′ and 3′ halves, respectively [32].

Nuclear matrix and ribonucleoprotein network
Nuclear matrices are filamentous meshes consisting of actin, matrins, and heterogeneous
nuclear ribonucleoproteins (hnRNPs), lncRNAs, repeat elements, and unspliced transcripts
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[73]. Several nuclear matrix components have been functionally delineated [74]. A naturally occur-
ring, dominant negative point mutation in human PIT1(R271W) results in the loss of association to
the matrin-3-rich network and targets gene activation, which can be rescued by retethering of the
mutant Pit1 protein to the matrin-3 network, demonstrating an essential role of the matrin-3-rich
network in gene regulation [75]. The repeat-rich C0T-1 hnRNAs (predominantly consisting of
5′ truncated L1 repeat RNAs) tightly associate with euchromatins, dependent on functionally
intact hnRNP-U/SAF-A matrix protein, and loss of C0T-1 hnRNAs results in chromatin conden-
sation [76]. However, the changes of nuclear matrix and nuclear actin skeleton during aging
and senescence have not been studied.

Architectural and regulatory lncRNAs with triplex-forming capabilities in aging
As described in the preceding text, lncRNAs are essential components, even the backbone of
many nuclear structures, such as nuclear speckles and paraspeckles, or organize the 3D
genome; thus, these lncRNAs are also called ‘architectural lncRNAs’ [77]. Given the flexibility
and multivalency of lncRNAs, they, together with RNA binding proteins (RBPs), often promote
the formation of nuclear condensates and membrane-less structures through phase separation
[78,79]. For example, among many aging-related lncRNAs, MALAT1 and NEAT1, together with
their binding partners, condense into nuclear speckles and paraspeckles, respectively [80], and
NEAT1 also serves as a sponge to soak up nuclear protein factors [81]. A variety of age-
relatedly changed RNAs also nucleate and form other nuclear bodies [82], including nuclear
stress bodies [83]. Additionally, dysregulation of several lncRNAs contribute to yet other nuclear
foci formation directly or indirectly [84–86], although their relevance to aging and senescence is
unclear, except for KCNQOT1 to SAHF [32]. LncRNAs may modulate the chromatin structures
and phase separation not only by interacting with RBPs but also through forming dynamic
RNA-DNA triplexes, and these RNAs can sometimes be regarded as regulatory lncRNAs because
of their sequence-specific targeting and potentially reversible interactions with DNAs, and, if
changed during the aging process, they can trigger a downstream effect on their DNA targets.

RNA-DNA Hoogsteen base pairing triplex target lncRNA to chromatin
LncRNA can sequence-specifically form a triplex with double-strand DNA (dsDNA) through
Hoogsteen base pairing, which occurs at C:GC, U:AT, and G:GC triads parallelly and A:AT,
G:GC, and U:AT antiparallelly over a stretch of nucleotides (often >18) [87,88] (Figure 2A).
RNA-dsDNA triplex formation has been known for a few lncRNAs, such as telomere interacting
TERRA, which is generated from the reverse telomeric sequence, rDNA interacting pRNA,
PAPAS, and the centromere transcribed MajSat [89], which all induce heterochromatic epige-
netic states. Most of them, including the aforementioned transcription-activating NFkBMARL-1
[16], act in cis on the chromatin state of the region from whence they are transcribed [90] or in
trans to one or two specific gene promoters nearby [91].

In contrast, the fairly abundant nuclear lncRNA KCNQ1OT1 is able to induce DNA methylation
and transposon repression in trans at thousands of sequence-specific evolutionarily young repet-
itive DNA elements genome-wide [32]. This trans targeting is guided by an RNA-dsDNA
Hoogsteen base-pairing triplex formed between the repeat-rich region of KCNQ1OT1 and the
target DNA and simultaneous binding to HP1 . The Hoogsteen base-pairing sequences in
KCNQ1OT1 are mostly encoded by the L1 repeats in the KCNQ1OT1 gene, which is 91 kb
long and contains a nearly 50-kb repeat-rich region at its 3′ half (Figure 2B). Deleting the
repeat-rich region of KCNQ1OT1 alone leads to activation of KCNQ1OT1 targeted Alu, L1, and
satellite repeat elements and L1 retrotransposition, and repression of KCNQ1OT1 results in
spontaneous cellular senescence [32]. Thus, the RNA-dsDNA triplex-forming sequence in
KCNQ1OT1 serves as a mammalian guiding RNA mechanism to achieve sequence specificity
Trends in Biochemical Sciences, Month 2023, Vol. xx, No. xx 5
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Figure 2. RNA-dsDNA triplexes and their guiding and targeting functions. (A) Long noncoding RNAs (lncRNAs) can
form parallel Hoogsteen base pairing with dsDNA at C:GC, U:AT, and G:GC triads and antiparallel pairing at A:AT, G:GC, and
U:AT triads. (B) Human lncRNA KCNQ1OT1 can form a triplex with evolutionarily young L1 and Alu elements at many sites
encoded by repeat elements within KCNQ1OT1. Red blocks are triplex-forming domains. Blue and yellow mark the
conserved non-repeat-rich region and the species-specific repeat-rich region in KCNQ1OT1, respectively. Hoogsteen
base pairing is denoted by ‘:’. (C) Deficiency of KCNQ1OT induces cellular senescence-associated events, including
heterochromatin decompaction and TE’s detachment from nuclear membrane, loss of H3K9me3 and DNA methylation,
retrotransposition, formation of SAHF, and increased SA- β-gal activity and SASP. (B) and (C) are reproduced, with
permission, from Zhang et al. [32]. Abbreviation: DNMT, DNA methyltransferase.
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in transposon silencing and heterochromatin stabilization (Figure 2). This solves the long-standing
mystery of sequence specificity of transposon silencing and makes it the first mammalian endog-
enous guiding sequence-based Cas9-like epigenome editing system. Even a randomly selected
genomic region can be ectopically silenced by incorporating an artificially designed guiding RNA-
dsDNA triplex sequence inserted in the KCNQ1OT1 gene, demonstrating the sufficiency of triplex
formation in the guiding process [32].

RNA-dsDNA triplex regulate chromatin modifications and structure
Different from the guide RNA-DNA interactions in the Cas9 system or other forms of known RNA-
DNA interactions, such as R-loop and RNA-DNA hybrid [92], which need the DNA damage repair
system to remove the structures, Hoogsteen base pairing of RNA to dsDNA does not disrupt the
dsDNA structure and thus is likely to be reversible. It is also much weaker than other RNA-DNA
interactions. Thus, RNA-dsDNA triplexes formed by Hoogsteen base pairing are ideal means
for reversible regulation of the genome architecture. A recent study found that computationally
predicted DNA-DNA interactionsmediated by dsDNA-lncRNA triplex hotspots facilitate reconstitu-
tion of experimentally observed high-throughput chromosome conformation capture (Hi-C)
interactions, suggesting a potential role of lncRNA in organizing the 3D genome structure and in a
sequence-directed manner [93].

Meanwhile, L1 and Alu elements are found to localizemainly to B and A compartments, respectively,
and when L1 transcripts are knocked down, the chromatin compartmentalization is dysregulated
6 Trends in Biochemical Sciences, Month 2023, Vol. xx, No. xx
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[94]. However, how the lncRNAs through triplex formation affect 3D genome organization, how
transposons such as L1 and Alu help organize the 3D genome, and whether these two are linked
as regulators or targets are unclear. KCNQ1OT1 lncRNA forming triplex with evolutionarily young
L1 and Alu subfamilies provides the first example of such chromatin organization by lncRNA-
repeat elements interactions [32]. A deep learning model on 12 chromatin isolation by RNA purifica-
tion (ChIRP)-sequencing datasets indeed shows that the majority of the RNA binding DNA motifs
inferred by the model match the Hoogsteen base pairing triplexes, suggesting the triplex formation
is a pervasive mechanism bringing lncRNAs to their target DNA sites [95].

RNA-dsDNA triplex affinity is additive and copy number dependent
Although a single copy of the RNA-dsDNA triplex is sufficient to induce ectopic binding of
KCNQ1OT1 to an H3K9me3 marked site as inferred from a Bayesian network analysis [32],
in addition to H3K9me3/HP1 binding, the induction of DNA methylation is also dependent on
the number of RNA-dsDNA triplexes on L1 and Alu elements. That is, KCNQ1OT’s affinity to
these targets is correlated with the number of Hoogsteen base-pairing triplexes at the target
region. With an increasing number of triplexes on L1 and Alu elements, their probability of
being targeted KCNQ1OT1 increases, peaking at six and four triplexes for L1 and Alu, respec-
tively [32], and the dwindling in binding probability after these optimum numbers perhaps
indicates a spatial or stereo constraint competing among different triplex sites. Additionally,
as shown by CLIP-seq and RNA pulldown, KCNQ1OT1 also directly binds to HP1, which rec-
ognizes and binds H3K9me3 on the chromatin and can further recruit DNA methyltransferases
to catalyze DNA methylation (Figure 2C). Bayesian network analysis also infers that the triplex
formation and H3K9me3 on the TE elements are both required for the DNA methylation
induced by KCNQ1OT1 binding and downstream tight transcription repression of the TE
elements, suggestive of an essential role of KCNQ1OT1 to convert transient repressive mark
H3K9me3 to the stable repressive mark DNA methylation for tight repression of the target
DNA (Figure 2C) [32].

It would be interesting to see whether the presence, number, and affinity of triplexes can predict
lncRNA target genes and their expression, given the expression level of the lncRNA andwhether it
is a repressor or an activator. Furthermore, the significance of lncRNAs and RNA-dsDNA triplexes
during cell aging might be estimated by the gain and loss of RNA-dsDNA triplexes according to
aging differentially expressed lncRNAs. The aging-related changes in lncRNA-dsDNAmay further
elicit changes in chromatin phase separation, epigenomic states, and 3D genomic structure and
subnuclear structure attachment that change the local and/or global nuclear morphology. For
example, downregulation of KCNQOT1 alone is sufficient to lead to the derepression of its target
transposons and their detachment from the repressive chromatin-associated nuclear lamina and
further induces the formation of nuclear heterochromatin foci and senescent cell morphology [32]
(Figure 2C).

Evolution of DNA-RNA triplex targeting
Not all TEs are repressed in young and healthy cells, and not all TEs are derepressed in aging and
cellular senescence. In fact, many of the TEs serve as enhancers, and some as promoters, in
many cell types [96], and many are activated and functional during development, aging, and
disease [15,97–100]. Transposon repression and activation are often sequence specific; for
example, although the evolutionarily young AluY subfamily has repressive chromatin marks,
older Alu subfamilies have an active enhancer-like chromatin state in human immune cells [101].
Consistently, the KCNQ1OT Hoogsteen base-pairing triplexes are only enriched for evolutionarily
youngest Alu and L1 subfamilies, increasing in triplex number with decreased evolutionary age
and depleted in the old subfamilies of Alu and L1 [32].
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Outstanding questions
What lncRNAs regulate what aging
nuclear structure? How many of them
involve dsDNA-RNA interactions?

Are different nuclear structural changes
during aging coordinated, sequential,
or hierarchical? What lncRNAs are the
master architects?

Can dsDNA-RNA triplexes accurately
predict lncRNA targeting? Can target
gene expression changes be predicted
from lncRNA changes?

How did RNA-dsRNA triplex evolve
through evolution? Do TEs play a key
role in this process?

Can AI accurately map nuclear mor-
phology changes to nuclear structures
and even underlying lncRNA changes?
Intriguingly, in contrast to the highly species-specific repeat-rich region, the nonrepeat region of
KCNQ1OT1 is highly conserved across mammals, interacting with actin and nuclear matrix pro-
teins [32], suggestive of its association with the nuclear matrix and a potential role contributing to
the nuclear morphology and its change during aging and senescence.

Studies on the evolution of KRAB transcription factors have shown that they preferentially bind to
nonactive but rapidly evolving TE that encode regulatory elements (not the evolutionarily
youngest) and evolve with the TEs in an arms race manner [102,103]. It would be equally interest-
ing to elucidate the evolution of the guiding sequence in KCNQ1OT1 against its young TE targets
across different species and in general lncRNAs against DNA targets.

How artificial intelligence (AI) may help to fine-map lncRNAs in aging nuclear
architecture
Some changes in nuclear architecture could represent a late change in aging, appearing more as
a consequence of aging, whereas some might be an initiator of aging. For example, NAD defects
[65,66] and SAHF formation [13–15] are very early events during senescence that precede most
senescence hallmarks. Deficiency of KCNQ1OT alone induces heterochromatin decompaction and
detachment from nuclear lamina of TEs, SAHFs, and other senescent phenotypes (Figure 2C) [32].
More senescence initiation lncRNA changes await to be discovered in large scale, preferably
genome-wide screens, which can be facilitated by AI.

Toward this, AI can already recognize senescent cells and nuclei with high accuracy [25,26].
Coupled with genome-wide CRISPR screens, lncRNA perturbations that render cells and nuclei
more senescent-like can be scored by AI models as senescent probabilities. Then detailed
nuclear structures and shapes can be further learned using supervised approaches when large
numbers of labeled training images are available or using Autoencoder or Transformer models
to identify the structures/areas of attention (large weight) to the AI classifiers. For example, a
nucleolus defect can be identified through either a specific AI model recognizing normal nucleoli
or by first identifying the most import area for the AI classifier and then retrospectively labeling it as
a nucleolus defect by nucleolus markers. AI can also help automate image segmentation and
feature extraction, such as separating the nucleolus, from the background and other structures
and quantifying its size, shape, and texture. These AI applications not only will speed up the
nuclear structural and morphological analyses but also will make the analyses more objective,
quantitative, accurate, and consistent.

Concluding remarks
It appears most known lncRNAs’ architectural roles have been investigated with their protein-
interacting partners, and, given that many lncRNAs are also computationally capable of forming
extensive RNA-dsDNA triplexes, they are likely the nexus between nuclear proteins and DNA,
making lncRNAs an equally important yet so far less well studied missing piece to fully decipher
the senescence-associated nuclear architectural and morphological changes.

Although accumulating evidence has now established that many lncRNAs are architectural back-
bones or regulators of various nuclear structures and that these lncRNAs drastically change in
abundance during aging, a direct link of lncRNA changes to nuclear morphology changes has
not been established in most cases. This is perhaps due to the lack of global assessment of
nuclear morphology in most experimental settings as different nuclear structures need different
probes to visualize. Now AI is able to distinguish senescence-associated nuclear morphological
changes at low and high resolutions [25,26]. This, together with CRISPR-enabled genetic pertur-
bations of lncRNAs, especially the aging-related lncRNAs, will help map and establish their direct
8 Trends in Biochemical Sciences, Month 2023, Vol. xx, No. xx
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involvement in the fundamental structural changes in the nucleus and their impact on cellular
senescence and aging (see Outstanding questions).
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