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The ticking of aging clocks
Highlights
Aging clocks determine aging rate by
the difference between predicted and
chronological age.

Clock-determined aging rate is asso-
ciated with health, morbidity, and
mortality.

The DNA damage response and its
associated epigenetic changes may be
the fundamental counting unit of aging
clocks.
Jing-Dong J. Han 1,2,3,*

Computational models that measure biological age and aging rate regardless of
chronological age are called aging clocks. The underlying counting mechanisms
of the intrinsic timers of these clocks are still unclear. Molecular mediators and
determinants of aging rate point to the key roles of DNA damage, epigenetic drift,
and inflammation. Persistent DNA damage leads to cellular senescence and the
senescence-associated secretory phenotype (SASP), which induces cytotoxic
immune cell infiltration; this further induces DNA damage through reactive oxygen
and nitrogen species (RONS). I discuss the possibility that DNA damage (or the
response to it, including epigenetic changes) is the fundamental counting unit of
cell cycles and cellular senescence, that ultimately accounts for cell composition
changes and functional decline in tissues, as well as the key intervention points.
Cellular senescence could be the next
upper-level unit of aging clocks.

Oxidative stress and inflammation con-
tribute to DNA damage and accelerate
aging clocks.
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Why are aging clocks needed?
Lifespan is not equal to healthspan. One can have a long lifespan with decades in bad health with-
out enjoying an equally long healthspan. Similarly, chronological age is not necessarily the same as
biological age. Supercentenarians have very old chronological ages but relatively young biological
ages [1]. Therefore, an important goal of aging research is to compress the time spent in bad health
(the morbidity span), thus allowing humans to live long lives at relatively young biological ages. One
way to achieve this is to accurately assess and intervene in aging itself instead of in lifespan. Using
large omic datasets, aging clock models (see Glossary) trained on either chronological or
perceived biological age can now accurately measure aging by calculating the aging rate
(ΔAge) – the difference between model-predicted and chronological age – that is independent
of age (Figure 1 and Table 1) [2,3]. Machine-learning methods for clock generation typically select
multiple biomarkers, sometimes hundreds. Discussing their selection and combination is beyond
the scope of this article because these features are specific to each clock and are well documented
in the original publications (Table 1). Despite the growing number of aging clocks that have been
developed, a consensus on their underlying counting mechanisms is still missing. I propose here
that DNA damage and the response to it are the fundamental units of the aging clocks.

Association of aging rate with health, disease, and mortality
Many metabolic and inflammatory biomarkers, such as blood pressure and levels of low-density
lipoprotein (LDL), total cholesterol (TC), and triglycerides (TGs) in the blood, as well as bone den-
sity, correlate positively or negatively with epigenetic or aging ratings based on 3D facial image
clocks [4–6]. This indicates that health and aging rate go hand in hand, and that ΔAge itself
should be considered as a health parameter.

Acceleration of the DNAmethylation clock has been found to be associated with a higher inci-
dence of complex diseases or disease severity (Table 1). A >20% higher all-cause mortality risk
with every 5 year increase in DNA methylation ΔAge was observed in cross-sectional [7] and
longitudinal studies [8–10]. Progeroid diseases such as Hutchinson–Gilford progeria syndrome
are associated with a high DNA methylation ΔAge [11]. Between identical twins, the twin with
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Figure 1. Measuring aging by aging
clocks. Linear or non-linear aging clock
models can be trained on various omic
datasets from large cohorts. The age-
independent difference between the
model-predicted and chronological age is
called ΔAge, where positive and negative
ΔAge scores indicate accelerated and
deaccelerated aging, respectively. When
the ΔAge is outside the mean absolute
error (MAE) of the model (light-blue lines),
the individuals can be reliably labeled as
fast or slow agers beyond the error of the
model, whereas those with ΔAge within
the MAE are called well-predicted.
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Glossary
Aging clockmodels: linear or nonlinear
models can be trained on large sets of
omic data to predict either chronological
or biological age. The difference
between the model-calculated age and
the true input age shows the error of the
model, often shown as the mean
absolute error (MAE), median absolute
error (MedAE), or rootmean square error
(RMSE). The model can also be
measured by the goodness of fit to the
input age, for example, by using the
Pearson correlation coefficient (PCC).
Aging rate (ΔAge): the age-
independent departure from the predic-
tions of clock models, often called ΔAge
or AgeDiff. When associated with health
status, ΔAge reflects the difference
between the
biological age of and individual and their
chronological age, and thus can be used
as an
estimate of aging rate.
Cell cycle: when a cell divides into two
daughter cells, the cell must go through
interphase (G1, S, and G2 phases)
followed by the mitotic (M) phase, which
together make up a cell cycle. In G1 and
G2 phases the cell grows, in S phase it
replicates its chromosomes, and in M
phase it undergoes mitosis.
Cell-cycle checkpoints: surveillance
gatekeepers that monitor the order,
integrity, and fidelity of cell-cycle events,
among them DNA damage, where
genome and chromosome integrity are
key factors. They consist of at least G1/
S, S, G2/M, and M phase exit check-
points.
3D facial image clock: a clock model
that is trained on large datasets of
human 3D facial images to estimate the
age of a person.
DNA damage response (DDR): the
ability of cells to sense and transduce
DNA damage signals and respond by
epigenetic changes, chromatin remod-
eling, damage repair, cell-cycle arrest, or
senescence induction depending on the
type and extent of damage. In prolifer-
ating cells, DNA damage elicits cell-cycle
arrest that allows time for DNA repair
before committing to subsequent
phases of the cell cycle. Although the
DDR often intervenes at the cell check-
points in proliferating cells, it also occurs
in non-proliferating cells.
DNA methylation clock: a clock
model that is trained on selected
genomic DNA methylation sites using
the higher DNAmethylation age shows a >twofold higher risk of mortality [10], highlighting the im-
portant impact of individual epigenomes shaped by different lifestyles on aging rate and mortality.
Strong associations with health, morbidity, andmortality have also been observed for many other
clocks, including transcriptomic, proteomic, metabolomic, and phenotypic clocks, as well as
brain-imaging and psychological clocks [2,3,12] (Table 1). Thus, more than age, ΔAge is a
general health indicator and disease risk factor that is an important measure of vitality, and
might be a convenient summation of many individual health parameters. Moreover, when mea-
sured at various levels or together with specific disease conditions or risks, it could also be
used to pinpoint the most problematic tissues or organs that are declining to an unhealthy state.

Pitfalls of clock models
Part of ΔAge estimates comes from errors intrinsic to the model instead of from a true difference
between biological and chronological age. Building more accurate models can minimize the
model error; however, models built to fit 'perfectly' to chronological age become increasingly use-
less in predicting biological age [13]. Models trained on some estimates of biological age avoid
such a dilemma. Compared to models trained on chronological age, GrimAge clocks, that are
trained on health-related surrogate indicators, better predict morbidity and mortality [13], but it
is important to note that these remain 'surrogate indicators', and as such do not allow us to
understand the full complexities of biological age. Convolutional neural network (CNN) clock
models trained on human-perceived ages of facial images, one measure of the 'biological age'
of the human face, are more strongly associated with health status than are clock models trained
on chronological age [6]. However, the latter can still capture the deviation of an individual from the
population average, in particular when the models are not over-fitted to the training data. Linear
models, compared to non-linear models such as deep neural network models, although not as ac-
curate, often have better interpretability – in other words, the exact features (biomarkers) and the im-
portance of their weights in contributing to the models can be readily extracted from the models.

Do individual clocks tick at the same rate across adult lifespan?
Analysis of frailty index (a measure of vulnerability to external stressors) in a Canadian cohort of
13 000 individuals aged >16 years showed that the rate of functional deficit accumulation is
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data from cell(s) or tissue(s) to estimate
the age of an individual.
Frailty index: a score between 0 and 1
to assess frailty, which is a state of
increased vulnerability to external
stressors. It is the ratio of present deficits
to all the deficits measured (usually
30–40).
Metabolic cycle: in yeast, cells cycle
between an oxidative metabolism phase
and a reductive metabolism phase, and
the reductive phase is temporally
coupled to the cell-cycle S phase by
checkpoint genes. Although a clear
metabolic cycle has not been elucidated
for mammalian cells, there are obvious
cell cycle-coupledmetabolic oscillations.
Senescence: a cellular state where the
cell permanently withdraws from the
cell cycle but remains metabolically
active. Major causes of this state are
persistent DNA damage or reaching a
replication limit.
Senescence-associated secretory
phenotype (SASP): the phenomenon
that senescent cells express and secrete
a large number of inflammatory cytokines
and extracellular matrix modulators that
attract immune cells for clearance.
However, in old tissues the senescent
cells are too many for the immune cells
to clear; they therefore remain in the tis-
sues and elicit a local inflammatory
microenvironment.
~4.5% ± 0.75 per year from age 20 to 105 years; however, two spikes of 6% and 7%were found
at ~40 and ~80 years of age [14]. A blood aging proteome of two American cohorts also revealed
three major peaks of changes at 34, 60, and 78 years of age. The first peak was associated with
body mass index (BMI), whereas the middle and last peaks were strongly associated with cardiovas-
cular and neurodegenerative diseases [15]. In Chinese cohorts aged between 20 and 77 years, the
facial and transcriptomic aging rates varied the most at ~40–50 years of age [6]. These observations
suggest that, although the aging clocks are constantly ticking, the rate can spike in particular
periods, and mid-life and ~80 years of age are crucial times during the course of human aging.

Do different clocks tick at the same rate?
Clocks measuring aging rate at different levels or in different tissues are not always synchronized.
Among the many tissues examined morphologically in worms, muscles deteriorate the first,
displaying mid-life onset, whereas neurons are largely intact throughout the lifespan. Plasma
membrane disruption of the cells of the intestine and hypodermis falls in between, and largely
coincides with death of the animal. These changes are variable both among animals of the
same age and between cells of the same type within individuals [16]. Recent single-cell RNA
sequencing (scRNA-seq) analyses also invariably reveal large variations of cellular aging within
the same tissue [17–20]. The first and last aging tissues are very important, but equally or perhaps
more important is whether aging of a particular tissue confers a turning point that accelerates
whole-body aging and makes aging a point of no return, or even elicits death. Because aging
acceleration appears to peak at ~40 and ~80 years in humans [14], are these peaks attributable
to the initiation of aging of different tissues, such as aging onset in the first tissue (e.g., muscle in
worms) or a turning point or system-failure point (e.g., intestine and hypodermis in worms)? This
seems possible given that muscle mass and function in humans start to deteriorate in midlife,
whereas ~80 years is the average human lifespan in most developed countries.

A multiomic study that followed 44 individuals over 4 years found four patterns of aging (kidney,
liver, immunity, and metabolic) which were called 'ageotypes'. Different individuals appear to dis-
play one or multiple ageotypes [21]. DNA methylation-based clock-calculated ages showed that
breast tissue has substantial aging acceleration compared to other tissues [11]. Low correlation
was found between blood telomere, epigenetic clock, and biomarker-composite aging-rate esti-
mators [22]. However, comparisons between the mean error ranges of the models are unreliable.
For example, despite a lack of significant correlation within the well-predicted populations whose
Δages were smaller than the mean error of the models, there was significant overlap between the
fast- or slow-aging outliers determined by the face and blood transcriptomic clocks, especially
between the slow agers of the two clocks [6]. Overall, it seems clear that there is substantial
heterogeneity in aging rates across individuals, tissues, and cells. However, the coherency
(significant overlap) at the very extremity of aging acceleration and deceleration (fast and slow
outliers) suggests that there is crosstalk between the aging clocks of different tissues.

Is there a master clock?
Clocks that measure different parameters, in different tissues, or even in different cells, do not tick
at the same rate, but they do seem to influence each other across multiple tissues. Therefore, is
there a master clock that drives or coordinates the aging clocks at different levels and in different
tissues? One such clock could come from the immune system. As the surveillance system of the
whole body, the immune system is present in all tissues, and engineered immune system aging in
mice did drive all tissues to age [23,24]. Similarly, heterochronic parabiosis studies show that
young and old blood rejuvenates and ages, respectively, many tissues and organs of the reciprocal
recipients down to the single-cell level [25]. Other than the immune system and blood, the
hypothalamus–pituitary–adrenal (HPA) axis and other neural endocrine pathways may also serve
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Table 1. Aging clocks developed at various levels from molecular to phenotypica,b

Level Refs Prediction Tissues Associations Error (in years)

DNA
methylome

[86] Age Saliva MAE = 5.2

[87] Age Blood Acceleration in tumor RMSE = 3.88–4.9

[11] Age 51 tissues and cell
types

Acceleration in 20 cancer types MedAE = 2.9–3.6

[88] Age Blood Association with alcohol assumption and number of children;
age acceleration in aplastic anemia and dyskeratosis congenita

MAE = 3.4–5.4

[89] Age Blood Association with life expectancy MedAE = 3.45

[90] Age Blood Acceleration in cancer and immune disease MedAE = 2.77

[91] Blood Association with all-cause mortality

[92] Phenotypic age Blood Association with mortality and morbidity

[93] All-cause mortality Blood Association with mortality, positive in cancer

[13] Lifespan Blood Association with mortality and morbidity

[94] Age Five cell types,
blood, skin, and
saliva

Acceleration in HGPS MedAE = 1–6.3

[95] Age Muscle MedAE = 4.6

[96] Age Blood Association with mortality

Transcriptome [97] Age Blood Association with six health parameters MAE = 7.8

[98] Age Dermal fibroblasts Acceleration in HGPS MedAE = 4.0

[99] Age Muscle MAE = 6.24

[100] Age Blood Associated with all-cause mortality, CHD, hypertension,
blood pressure, and glucose levels

PCC = 0.65–0.70

[6] Age PBMC Association with health parameters and lifestyles and facial
clocks

MAE = 5.68

Proteome [101] Age Plasma Association with 12 health parameters MAE = 9.7

[102] Age Plasma Association with aerobic exercise training MAE = 1.84–2.44

[103] Age Plasma Association with all-cause mortality PCC = 0.8

Metabolome [104] Age Urine Association with all-cause mortality, and clinical phenotypes RMSE = 11.19 for men
RMSE = 10.37 for
women

[105] Age Blood Association with all-cause mortality and clinical phenotypes PCC = 0.654, MAE = 7.3

[106] Age Cerebrospinal fluid R2 = 0.41–0.83
MAE = 6.91–12.85

[107] Age Urine and serum Association with overweight/obesity, diabetes, heavy
alcohol use, and depression

MAE = 3.71–6.49

Metagenome [108] Age Stool Acceleration in type I diabetes MAE = 5.91

Imaging [5] Age 3D facial images Association with blood test indicators MAE = 6.2

[109] Age Eye corner images MAE = 2.30

[110] Brain MRI Association with mortality MAE = 5–7

[111] Brain MRI Association with cognitive impairment MAE = 4.29

[6] Age 3D facial images Association with health parameters/lifestyles and PBMC
clocks

MAE = 2.8

[6] Perceived age 3D facial images Association with health parameters/lifestyles and PBMC
clocks

MAE = 2.9

Clinical blood
tests

[112] Age Blood MAE = 5.55

[113] Age Blood Associated with hazard ratio MAE = 5.94

[114] Age Blood Acceleration in smokers MAE = 5.72
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Table 1. (continued)

Level Refs Prediction Tissues Associations Error (in years)

Psychological [12] Age and
perceived age

Psychosocial
questionnaires

Predictive of all-cause mortality risk MAE = 6.70 for age;
MAE = 7.32 for
perceived age

aThis table is adapted, modified, and updated based on [2].
bAbbreviations: CHD, coronary heart disease; HGPS, Hutchinson–Gilford progeria syndrome; MAE, mean absolute error; MedAE, median absolute error; MRI, magnetic
resonance imaging; PCC, Pearson correlation coefficient; PBMC, peripheral blood mononuclear cell; RMSE, root mean square error.
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as coordinators of aging across different tissues [26]. The local SASP of senescent cells can also
be carried to distal tissues, making aging 'contagious' [27]. Indeed, even skin aging has an impact
on whole-body aging through all the aforementioned channels [28]. However, it remains unclear
whether any of the clocks may serve as a master clock.

What are the counting units of the clocks?
Most timepieces use an oscillator as the unit to track time, including mechanical, quartz, and
circadian clocks, but what about aging clocks? GWAS studies on premature aging syndromes
revealed that DNA damage response (DDR) deficits underlie the acceleration in aging rate
[29]. GWAS analysis of DNA methylation ΔAge also identified variants of DDR genes as top hits
[30]. Positive facial ΔAge was found to be associated with infections, inflammation, and lyso-
somes, and expression of the DDR gene p53 (TP53) was inferred to decrease blood tran-
scriptome ΔAge [6]. Based on scRNA-seq data, increased inflammatory cytokine expression,
ligand–receptor interactions, and cellular senescence markers were hallmarks of aging at
the single-cell level, and these were exacerbated by disease conditions such as interstitial
lung disease [31,32] and severe coronavirus disease 2019 (COVID-19) [33,34]. Senescent
cells were found to increase dramatically in the tissues of severe COVID-19 patients, and
senolytics ameliorated COVID-19 outcomes in mouse models [35,36]. Caloric restriction (CR)
and intermittent fasting (IF) are effective means to decelerate aging. In Caenorhabditis elegans,
CR/IF first induced lysosome andmetabolic changes downstream of themTORpathway, followed
by phosphorylation changes downstream of AMPK and TAX-6, and finally a long-term effect on
cell cycle and DDR functions downstream of FOXO/DAF-16, where the three pathways form a
synergistic feedback loop [37]. These findings suggest that nutrition signals impinge on cell-cycle
control and in turn affect the DDR. Do enhanced cell-cycle checkpoints and DDR actually
slow down the cell cycle and thus alter the internal cellular clock? This has not yet been tested.
However, scRNA-seq analysis of in vitro neural differentiation shows that the length of the differen-
tiation process for a single stem cell is controlled by a cell-intrinsic clock atmultiple cell-cycle check-
points, and the M-phase exit checkpoint this has a particularly large impact [38]. It would thus be
interesting to ask whether aging clocks are similarly measured by the cell-cycle interval and are
controlled by cell-cycle checkpoints (Figure 2, Key figure).

A plethora of studies demonstrate that cell-cycle and cellular senescence are largely controlled by
the DDR. As an alternative state to the cell cycle, does senescence mark another, larger type of
time unit? In other words, an overwhelmed DDRmight mark the basic counting unit of the clock in
both proliferating and non-proliferating cells; cell cycles would be the next level time-units
counted in proliferating cells, whereas senescence would count the endings of cell cycles.
These would be similar to counting in hours (DDR threshold), days (cell cycle), and months
(senescence) for human. In short-lived species, the capacity of the DDR is lower, and the cell
cycle and senescence are much faster, and all count toward a final readout of cellular composi-
tion and tissue integrity with age (Figure 2). Intriguingly, consistent with this hypothesis, a study of
16 mammalian species showed that the mutation rate per year in intestinal crypts is precisely
Trends in Endocrinology & Metabolism, Month 2023, Vol. xx, No. xx 5
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Figure 2. DNA damage and the DNA damage response (DDR) may play a fundamental role in the cascade of aging clock units, often mediated through cell-cycle
checkpoints. S-phase cell-cycle checkpoints ensure faithful temporal coupling of DNA replication with the reductive (Rd) phase of the metabolic cycle, whereas the
opposite oxidative (Ox) phase is temporally coupled with ribosomal biogenesis. The decline in ribosomal protein expression is a key determinant in single-cell aging
clocks in many species including human. Supercentenarians have a unique tendency for high ribosomal protein gene expression. Cell cycles might be a small ticking
unit of the aging clock by accumulating unrepaired damage in each cycle. Persistent DNA damage leads to cellular senescence, a middle-level ticking unit of the aging
clock, which by triggering the senescence-associated secretory phenotype (SASP), elicits immune cell infiltration. Cytotoxic immune cell infiltration causes the release
of reactive oxygen and nitrogen species (RONS). These lead to further DNA damage, in particular deamination of methylcytosine and oxidation of guanine. This in turn
leads to an increased DDR, thus contributing to a large higher level ticking unit of the aging clock. The DNA damage–inflammation cycle further leads to compromised
cell differentiation through interplay between the genome, epigenome, transcriptome, and proteome. On the other hand, epigenome modifiers and geroproctectors can
protect DNA from damage and enhance DNA repair. Other, especially larger, ticking cycles may also exist and feed into or influence these cumulative oscillating units.
Potential intervention points to delay or reverse aging clocks are marked in green fonts (text for details). Figure created using BioRender (www.biorender.com).
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inversely correlated with the lifespan of the species [39], indicating that mutation rate and total
mutations accumulated act as a precise timer that determines the mean lifetime across species.
It would be interesting to see whether mutation rate also correlates inversely with lifespan and
positively with aging rate across individuals.

Coupling of cell metabolism to the DDR and cell-cycle checkpoints
Recent single-cell aging clock or lifespan analyses show that ribosomal and mitochondrial
activities decline with age [1,40,41]. Ribosomal protein gene expression is a key determinant
6 Trends in Endocrinology & Metabolism, Month 2023, Vol. xx, No. xx
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of single-cell biological age in human blood [1], as well as in fly and mouse tissues [42], and
correlates with lifespan across 41 mammalian species with mean lifespans ranging from 3 to
>200 years [43]. Highly elevated ribosomal protein levels are observed in supercentenarians,
and could be causal for the low SASP gene expression in their blood [1]. Simultaneously elevating
or stabilizing ribosomal and mitochondrial gene expression by overexpression or by circuitry
rewiring from a toggle switch to negative oscillation can extend the replicative lifespan of budding
yeast cells [40,41]. How do these feed into the cell-cycle units of aging clocks? The answer
might lie in the coupling of cell cycles tometabolic cycles. In yeast cells synchronized by glucose
starvation, cells cycle between an oxidative metabolism phase and a reductive metabolism phase
every 4–5 h. The oxidative metabolism phase resembles a short and sharp burst that mainly
involves mitochondrial energy production and ribosomal biogenesis – in other words, temporal
coupling of ribosomal protein gene expression with oxidative metabolism [44]. Hence, it would
be interesting to test whether the highly energy-demanding ribosomal biogenesis relies on efficient
production of oxidative energy, and is compromised without it, as is seen during aging. Although
further evidencewill be necessary to support the existence ofmetabolic cycles in higher organisms,
our study has shown that yeast genes expressed in the oxidative and reductive phases, when
mapped to Drosophila melanogaster, decrease or increase their expression linearly with age,
respectively, throughout the entire adult lifespan [45]. Moreover, the expression of oxidative phos-
phorylation genes correlates strongly and positively with the expression of mitochondrial ribosomal
proteins, which in turn correlates strongly with cytosolic ribosomal protein expression and lifespan
across 41 mammalian species [43]. By contrast, DNA replication (S phase) is tightly coupled to the
beginning of the reductive metabolism phase. Cell-cycle checkpoint mutants that uncouple the S
phase from the reductive phase (permitting the S phase to occur in the oxidative metabolic
phase) result in more frequent and truncated metabolic cycles and more spontaneous mutations
[46]. This suggests that cell metabolism, in particular oxidative metabolism, is an important source
for the accumulation of cellular DNAmutations induced by oxidative damage if the cell-cycle check-
points are not properly implemented to coordinate the cell cycle and the metabolic cycle [46]. Inter-
estingly, across murine species of different lifespans, the expression of genes related to
mitochondrial oxidative phosphorylation correlates negatively with lifespan, consistent with the no-
tion that oxidative metabolism undermines lifespan [47]. The opposite is observed across mam-
malian species with a larger lifespan diversity, ranging from shrews to whales [43], indicating
that higher mammals might have circumvented the mutation burden of oxidative metabolism
by evolutionary innovations. Consistently, scRNA-seq-based oligodendrocyte, astrocyte,
and microglia aging clocks in mouse brain are highly associated with oxidative stress and
interferon response [48].

Free radical-induced DNA damage accumulation has been proposed to be a cause of aging since
the 1950s [49]. However, this hypothesis has not been substantiated because of the rarity of the
DNAmutations at the cell population level in human tissues, which can only now finally be studied
with the development of single-cell genomic sequencing technologies. Indeed, age-relatedmuta-
tions often cluster in rare hypermutated cells that harbor many mutations and tend to give rise to
clones and clonal expansion if they gain a growth and/or survival advantage [50]. Using single-cell
technologies, nearly all aging single-cell DNA mutation studies invariably identified a progressive
accumulation of DNA mutations, including functional mutations and hypermutations, with
age; the most common age-related mutation signatures include a DNA methylation-associated
deamination signature, followed by signatures of DNA damage and repair, including oxidative
and other sources of lifestyle incurred (such as smoking) DNA damage [39,51–55]. In particular,
smokers have faster mutation accumulation than non-smokers in bronchial epithelial cells [52],
and patients with Alzheimer's disease have more and faster DNA mutations in the prefrontal
cortex than age-matched controls, and oxidative damage was the most dominant signature in
Trends in Endocrinology & Metabolism, Month 2023, Vol. xx, No. xx 7
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these individuals [55]. These findings imply that life history, epigenome, and microenvironment
might be important factors that drive DNA mutation rate and thus the ticking of aging clocks. In
fact, local inflammation and inflammatory cell infiltration to tissues are a major source of RONS
that can induce both deamination and oxidative damage to DNA. It is well known that oxidative
damage can convert G to 8-oxo-G, thus inducing DNA mutations. However, common deamina-
tion-induced DNA mutations can be also induced by an inflammatory environment, in particular
by nitrosative RONS such as NO, that are generated by immune cells [56]. Further, the damaged
DNA can further trigger more cellular senescence, SASP [57], local inflammation, and inflamma-
tory cell infiltration [58], thus forming a vicious positive feedback cycle (Figure 2). Unrepaired DNA
damage, when persistent, will not only result in cellular senescence – even when no permanent
cell-cycle arrest occurs, it may compromise the differentiation potential of the cells or bias the lin-
eage of progeny cells (Figure 2), for example, via clonal expansion induced by somatic mutations
[59].

It would be interesting to determine whether the various clocks can be decomposed to small
cumulative and cycling units such as DNA mutation burden, DDR length, and cell-cycle length
and number at the cellular level, or senescent cell count, cell state, and cell composition at the tis-
sue level, that all add up to the minutes, hours, days, and years in biological age of the tissue and
system (Figure 2). Furthermore, if DNA damage accumulation is the fundamental counting unit of
tissue aging clocks, a clock based on DNA mutation burden would be more precise and funda-
mental than other omic data-based clocks which act as proxies to the real clock or measure in
larger units.

Erosion of epigenetic modifications linked to the DDR
Transposable element (TE) derepression has long been recognized as a hallmark of aging and
cellular senescence. In particular, derepression of evolutionarily young 'hot L1' elements capable
of transposition induces pervasive DNA damage and genome instability and interferon response
during aging [29,60–62]. The reduced levels of the long non-coding RNA (lncRNA) KCNQ1OT1
in early senescence result in loss of DNA methylation of evolutionarily young L1 and Alu TEs
and induce retrotransposition, DNA damage, and SASP production. KCNQ1OT1 sequence-
specifically silences these young TE elements through RNA–double-stranded DNA (dsDNA)
triplexes and the recruitment of epigenetic silencing machineries [63]. Similarly, endogenous
retroviruses have also been observed to be derepressed, and even packaged, inducing inflam-
matory responses [64]. In addition, clonal expansions in cancers and aging often involve muta-
tions in DNA methylation and demethylation enzyme genes such as DNMT3A and TET2 [65]. In
general, DNA methylation and repressive histone modifications such as trimethylation of histone
H3 lysine 27 (H3K27me3) and lysine 9 (H3K9me3) decrease with age, whereas active H3K4
methylation increases with age. The repressive marks that decrease with aging not only repress
repetitive elements and protect the DNA from damage, but they also play important roles in the
DDR. By contrast, actively expressed coding genes often lose active chromatin marks during
aging. Together, these lead to aging-related epigenetic drift [61]. Interestingly, the dsDNA
break-induced epigenetic changes and epigenetic clock advancement can be reversed by
OCT4–SOX2–KLF4 (OSK) overexpression in mice [66], suggesting that epigenetic changes
induced by DNA damage, rather than DNA damage per se, might be the direct counting mecha-
nism for DNA damage.

Clocks to assess the effectiveness of delayed aging and rejuvenation therapies
If DDR and senescence are at the center of the clocks, the reversal of aging clocks would require
(i) reversing the (epi)genetic states marked by the DDR, (ii) removing the senescent cells, or (iii)
replenishing the tissues with cells differentiated from progenitor cells that have less mutated
8 Trends in Endocrinology & Metabolism, Month 2023, Vol. xx, No. xx
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Outstanding questions
What is the master aging clock, if there
is one? What are the molecular
interactions between clocks at different
levels?

What is the fundamental counting unit
of aging clocks? What are the different
counting units at different levels? Do
they form precise and cumulative
hierarchies?

Is DNA damage or the damage-
induced epigenetic changes the most
direct cause of an increase in ΔAge?

What is the most crucial point of
intervention in any clock or compilation
of clocks?

How can cellular metabolism be
leveraged to slow down the clocks?
Can this be done in a personalized
manner?
genomes. So far, although biochemical and physiological parameters suggest that genome in-
tegrity protectors and DDR boosters such as sirtuin/SIRT activators [67,68] and senolytic treat-
ments [69–71] can confer more youthful appearance and functionalities in mice, direct aging clock
measurements of these treatments are still lacking. Senomorphics inhibit the SASP of senescent
cells, such as by suppressing retrotransposition [60,62] and reducing NF-κB activity via suppression
of NF-κB/MARL-1 [72], but have also not been quantified by aging clocks. On the other hand, reju-
venation of retinal ganglion cells in aged mice by the OSK combination was shown to restore ribo-
somal DNA methylation age of the retinal ganglion cells in addition to functional regeneration [73].
Partial reprogramming by OSK plus MYC (OSKM) has also been shown to confer a younger DNA
methylation age in mice [74,75]. A small 12 month clinical trial on six individuals of a combination
of human growth factor, dehydroepiandrosterone (DHEA), and metformin revealed an average 2.5
years decrease in saliva DNA methylation age measured by four clocks [76]. Interestingly, a proin-
flammatory response is associated with reprogramming and needs to be quenched for successful
chemical reprogramming of human fibroblast to pluripotent cells [77]. In accord, a recent study also
shows that an effective aging delay and lifespan extension can by induced by inhibiting the central
inflammatory regulatory cGAS [57].

In addition to rejuvenation treatments, aging clocks have been used to quantify the effect of
metabolic interventions. DNA methylation clocks show that Rhesus monkeys under 30% calorie
restriction are 7 years younger in epigenetic age compared to ad libitum controls [78]. Male mice
under CR show an average 20% reduction in epigenetic age versus their chronological age [79]. A
randomized controlled clinical trial conducted in 43 healthy men aged 50–72 years of an 8 week
intervention program including diet, sleep, exercise, and relaxation guidance, as well as supple-
mental probiotics and phytonutrients, showed an average 1.96 years decrease in blood DNA
methylation age at the end versus the beginning of the program in the treatment group [80].
Many endogenousmetabolites, such as the NAD+ precursors nicotinamide riboside (NR) and nic-
otinamide mononucleotide (NMN) [81], as well as spermidine [82], α-ketoglutarate [83], myoino-
sitol [84], and uridine [85], have been shown to delay aging, but remain to be quantified by aging
clocks. Different treatments can only be quantitatively and panoramically compared, and person-
alized according to the particular aging rate acceleration of an individual, by evaluation of multiple
clocks at many different levels. A catalog of aging clocks and matching interventions will be useful
to guide both clinicians and the general public on the journey toward a 'young' old age.

Concluding remarks and future perspectives
Because aging clocks range frommolecular to phenotypic (Table 1), many of the age scores may
not be directly attributable to DNA damage. Error-prone DNA replication itself can lead to DNA
damage, and global changes such as systemic inflammation or dysregulated hormonal circuitry,
or local events such as uncoupling of the cell cycle frommetabolic cycles and oxidative metabolic
activity, may also result in DNA damage. Consequentially, these global and local events feed into
and feedback to DDR checkpoints.

Many outstanding questions remain regarding the underlying mechanisms of aging clocks and
their ticking units. At this stage, the hypothesis that DNA damage serves as the fundamental
counting unit for aging clocks remains preliminary. Further evidence, particularly through single-
cell analysis, will be necessary to establish a causal link between DNA damage and ΔAge across
individuals (see Outstanding questions). Mapping of the molecular underpinnings of clock ΔAge
scores at different levels by GWAS or epigenome-wide association studies (EWAS) will reveal
whether a composite clock can capture the weakest link and provide the way to reset the
clock(s). Importantly, single-cell whole-genome sequencing in large human populations and
causal quantitative associations between DNA damage and ΔAge will be necessary to establish
Trends in Endocrinology & Metabolism, Month 2023, Vol. xx, No. xx 9
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beyond doubt that DNA damage and the DDR are a fundamental precise counting unit of aging
clocks.
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