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Abstract
Stroke is a major threat to life and health in modern society, especially in the aging 
population. Stroke may cause sudden death or severe sequela-like hemiplegia. 
Although computed tomography (CT) and magnetic resonance imaging (MRI) are 
standard diagnosis methods, and artificial intelligence models have been built based 
on these images, shortage in medical resources and the time and cost of CT/MRI 
imaging hamper fast detection, thus increasing the severity of stroke. Here, we devel-
oped a convolutional neural network model by integrating four networks, Xception, 
ResNet50, VGG19, and EfficientNetb1, to recognize stroke based on 2D facial images 
with a cross-validation area under curve (AUC) of 0.91 within the training set of 185 
acute ischemic stroke patients and 551 age- and sex-matched controls, and AUC of 
0.82 in an independent data set regardless of age and sex. The model computed stroke 
probability was quantitatively associated with facial features, various clinical param-
eters of blood clotting indicators and leukocyte counts, and, more importantly, stroke 
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1  |  INTRODUC TION

Numerous molecular dysfunctions, such as genome instability, 
stem-cell exhaustion, and cellular senescence, manifest during aging 
(López-Otín et al., 2013). Consequently, aging is intricately linked to a 
spectrum of diseases, including macular degeneration (Fleckenstein 
et al., 2024), cancer (Podolskiy et al., 2016), cardiometabolic multi-
morbidity (Jiang et al., 2024), stroke thrombectomy outcome (Benali 
et al., 2024), and atherosclerosis (Tyrrell et al., 2023). The aging pro-
cess can detrimentally affect the cardiovascular and cerebral vascu-
lar systems, thereby exacerbating the progression of ischemic stroke. 
Research indicates that aging can impair the vasodilation response 
to acetylcholine in cerebral arteries of WT mice, with even more pro-
nounced effects observed in ACE2 deficiency mice, potentially due 
to oxidative stress (Peña-Silva et al., 2012). This impairment may ele-
vate the risk of stroke in aging populations. Furthermore, population 
studies have demonstrated a significant correlation between short-
ened telomere length and ischemic stroke, underscoring the pivotal 
role of aging in stroke etiology (Yetim et al., 2021). Aging can also 
prompt the emergence of abnormal neutrophils, exacerbating isch-
emic brain injury (Gullotta et al., 2023; Schulz & Massberg, 2023). 
Collectively, these evidences solidify stroke as an age-related dis-
ease. Consequently, the timely detection and prevention of stroke 
not only supports global healthy aging initiatives but also serves to 
mitigate morbidity and mortality among the elderly population.

Stroke, although considered an acute disease, is well known to 
have neurovascular problems as the major root cause (Peña-Silva 
et al., 2012; Tiedt et al., 2022). For example, chronic inflammation 
of the blood vessels (Esenwa & Elkind, 2016; Lo et al., 2003) and el-
evated coagulation alter the general microvessel network, leading 
to high risk of stroke (Petersen et al., 2018). This central facial area, 
known as the “central cyanosis zone,” reflects blood flow to the 
brain. Central cyanosis refers to a bluish discoloration of the lips 
and mucous membranes inside the mouth that occurs when there is 
a decrease in the oxygen saturation of the blood under poor blood 
flow or insufficient oxygen. Changes in the color of these areas can 
provide valuable information about the oxygenation status of the 
blood and potentially reflect the overall blood flow to the brain 
and other vital organs. (McMullen & Patrick, 2013) Moreover, as 
a consequence of severe stroke, there are numerous neural mus-
cular impairments observable as paralysis on the face and limbs 
(Schimmel et al., 2017).

The incidence of stroke has continued to climb in recent 
years, making it the second leading cause of death and creating 

heavy burdens for both individuals and society as a whole (Feigin 
et al., 2021). Lifestyle (Pandian et al., 2018) and genetics (Boehme 
et  al.,  2017; Georgakis & Gill, 2021; Malik et  al., 2015; Markus & 
Bevan, 2014; Zheng et  al.,  2019) are both contributing factors to 
stroke risk. Due to the complexity and severity of the condition, 
early diagnosis is critical for effective stroke treatment and recov-
ery (Zachrison & Schwamm,  2022). In the recent three decades, 
the annual number of stroke cases and deaths caused by stroke has 
particularly increased among individuals over 70 years of age (Feigin 
et al., 2021). Moreover, the recent COVID-19 pandemic has further 
elevated stroke risk. As much as 78% of COVID-19 patients suffer 
from cardiac impairment, and 58% of those with long COVID face an 
even greater risk of various cardiovascular diseases, including heart 
failure, dysrhythmias, and stroke (Davis et  al.,  2023). Therefore, 
practical and easy methods for monitoring stroke risk are essential 
for people at risk, such as the elderly and those suffering from long-
term COVID-19.

Acute stroke diagnosis typically relies on noncontrast computed 
tomography (CT), CT perfusion imaging, and angiography. However, 
the limited availability of CT can hinder clinicians from quickly iden-
tifying and diagnosing stroke. In such cases, body or facial symp-
toms, such as severe facial paralysis, may be used for early and 
rough stroke recognition. Unfortunately, subtle facial symptoms can 
be difficult to recognize in patients in the early stages of a stroke. 
Typically, clinicians cannot obtain a standardized quantitative nu-
meric stroke probability value through conventional diagnostic 
methods, as they primarily rely on symptoms or imaging techniques 
such as CT or MRI scans. This limitation motivated us to develop 
a predictive model that can rapidly estimate stroke probability to 
assist clinicians in their diagnostic process. Artificial intelligence (AI) 
has been used to reliably detect neurological disorders from facial 
images, as evidenced by previous studies (Gurovich et  al.,  2019; 
Hsieh et al., 2022). Many image-based methods like combining deep 
learning and CT (Wu et  al., 2021) or electroencephalogram (Boyd 
et al., 2017; Farid & Djamal, 2021; Kaur et al., 2022) have been pro-
posed to predict stroke. However, these methods are limited by ex-
pensive or time-consuming image generation or special devices like 
CT or MRI machines; thus, they are not suitable for rapid routine 
screens that are urgently needed for the general population. Thus, 
it is still an open question whether symptoms-associated fast and 
noninvasive AI methods can be established to early predict stroke 
or to serve as computer-aided rapid prediagnosis for stroke at the 
finger-tip, even on a daily basis. Our previous studies have already 
found biological age can be calculated from facial images by linear 

incidence in the near future. Our real-time facial image artificial intelligence model can 
be used to rapidly screen and prediagnose stroke before CT scanning, thus meeting 
the urgent need in emergency clinics, potentially translatable to routine monitoring.

K E Y W O R D S
aging, diagnosis model, facial images, stroke
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models (Chen et al., 2015) and more accurately by AI models (Xia 
et al., 2020). This inspired us to use deep learning to recognize stroke 
from facial images collected from emergency rooms in hospitals lo-
cated in Shanghai. Our model input only relies on face images, which 
are fast-collected, noninvasive, and affordable. Our model reached 
an area under the curve (AUC) on the receiver-operating curve (ROC) 
of 0.91 in cross-validation and 0.82 in the independent dataset. The 
stroke probability reassuringly showed the association between our 
model and clinical factors for stroke risk, like the coagulation mark-
ers fibrin degradation product (FDP) and D-dimer, and furthermore 
predicted future high stroke incidence within 2 years. Moreover, our 
facial recognition model identified several previously uncertain or 
unknown clinical indicators, such as neutrophil counts, leukocyte 
counts, and glucose level, as potential auxiliary markers for stroke 
risk. In summary, we developed an easy and economical method to 
scan acute ischemic stroke in a timely manner and detect correlated 
molecular features.

2  |  RESULTS

2.1  |  Model performance

Facial images from patients with highly suspected stroke symptoms, 
mainly headaches, dizziness, and weakness, were obtained and 
marked as potential stroke samples by clinical experts (see Section 4, 
Figure 1a,b). From 2019 to 2021 in Shanghai Ruijing Hospital, 223 
acute ischemic stroke samples were diagnosed by MRI/CT-positive 
imaging, or when highly suspicious (meet other criteria) but lack-
ing comprehensive medical imaging, diagnosed by symptoms based 
on a standard diagnosis workflow (2018 China Ischemic Stroke 
Diagnosis Guidelines) by clinical experts, after dropping all hem-
orrhage and diseases with similar symptoms, including Parkinson 
disease or transient ischemic attack (TIA) (Figure 1a,b). Among the 
223 imaging-confirmed ischemic stroke images we used, 219 had 
electric medical records. In this study, 56.17% and 43.83% of stroke 
patients were MRI positive and negative, respectively (Figure  1c, 
Table S1). Of note, all samples have a normal face morphology com-
pared to the naked eye, which is not associated with known neural 
deficits (see Section 4). A quantitative stroke probability can assist 
doctors to rapidly evaluate the stroke risk without medical imaging, 
thus giving treatment priority to critically high-risk patients. Stoke 
AI classifier will not only help the patients who do not have CT or 
MRI but will also help to confirm those who have only CT, or contra-
dictory CT and MRI results, especially given CT has high false nega-
tive within 24 h of stroke due to its delayed detection ability. MRI, 
although more definitive for diagnosis, is more expensive, needs 
advance appointment, and is unavailable during nonworking hours; 
hence, it is not preferred.

For model training, we recruited stroke patients from Shanghai 
Ruijin Hospital and age- and sex-matched negative controls among 
patients at the same hospital or three other hospitals (Jidong, 
Majiagou, and Fuqing) (Methods). For model training, we matched 

age and sex to ensure the model would not be affected by these 
confounding factors. In total, 185 confirmed stroke patients were 
kept as the positive group, and 551 non-stroke or healthy people 
were matched as the control group (Figure  S1a) to build a stroke 
face recognition program by deep neural networks. The remaining 
38 unmatched samples were used as a part of the independent test 
dataset. Since the larger size of control samples can boost the model 
robustness and, most importantly, avoid a high false positive rate, we 
included control samples three times as many as the stroke samples. 
All samples were preprocessed for generating 224 × 224 images 
after posture correction (Figure 1d) and randomly split into 10 folds 
for cross-validation, followed by data augmentation (see Section 4).

Considering the relatively small sample size for AI approaches, 
we combine some strategies to boost model performance. These 
include (1) using only age-  and sex-matched normal controls for 
stroke samples to avoid potential confounding factors, (2) simple 
data augmentation like image flipping for each sample, (3) utilizing 
light networks with novel structures like EfficientNet (Tan, 2019) 
and Xception (Chollet, 2017) to increase generalizability, and (4) tak-
ing model ensemble, which gives most boost in model performance 
according to our monitoring of the AUC at each step (Figure  1e) 
(see Section 4.4). Furthermore, finetuning in model training using 
ImageNet pretrained weights helps models to converge (Figure 1e).

We used four convolutional neural networks (CNN) including 
EfficientNet (Tan, 2019), Xception (Chollet, 2017), VGG (Simonyan 
& Zisserman, 2014), and ResNet (He et al., 2016) to train a classi-
fier (see Section 4) (Figure 2a). Cross-validation was applied to avoid 
overfitting, and the stroke probability was computed by averaging all 
augmented replicates of one sample within one model and followed 
by model ensemble. The Adam optimizer was used for loss optimi-
zation while the epoch number was set to 20 (Figure S1c). To unbi-
asedly evaluate the model performance, we used the AUC metric, 
which is independent of class size and probability threshold, as well 
as classification accuracy. Based on the red, green, and blue (RGB) 
color images without the depth information, the cross-validation 
AUC reached 0.91 and an accuracy as 0.86 (95% CI, 0.025) after 
network ensemble (see Section 4) (Figure 2b). The true positive rate 
reached 0.76, while the false positive rate was 0.11 under the prob-
ability threshold of 0.40. To compare to conventional models, we 
have applied Partial Least Square Discrimination Analysis (PLS-DA) 
and Support Vector Machine (SVM) to the preprocessed texture im-
ages. The AUCs of PLS-DA and SVM are 0.80 and 0.82, respectively 
(Figure S1d), significantly lower than the AUC of 0.91 attained by the 
CNN model, demonstrating the superiority of CNN in this task. We 
further prepared an independent dataset to examine the generaliz-
ability of the model. The independent dataset included 38 additional 
stroke samples and 20 controls from Ruijin Hospital, 9 stroke sam-
ples and 6 controls from Jiading hospital, 15 controls from Jidong 
Hospital, and 9 controls from Majiagou hospital (Figure S1b). Samples 
in the independent test dataset are not age- or sex-matched, or lim-
ited to the same age and sex distribution as the training dataset, so 
that a good performance on the independent test dataset will indi-
cate the model is generalizable to other independent cohort even 
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when confounded by age, sex, and other unanticipated factors. On 
this independent dataset, the model reached an AUC of 0.82 and an 
accuracy of 0.73 (95% CI, ±0.088) (Figure 2b). The high AUC further 
indicates a robust generalizability of discriminating stroke across dif-
ferent age ranges.

2.2  |  Model interpretation

To interpret the model and identify the facial features that enabled 
the recognition of the stroke by our CNN model, we compared true 
control and true stroke groups on all three channels red, green, 
and blue, and the depth channel of texture images separately by 
Mann–Whitney U test (see Section  4), and kept the significantly 
differential pixels (FDR <0.05) for visualization. The red and green 
channels showed lower mean values in stroke group, while the blue 
channel showed the most prominent and contiguous features, that 
is, significantly higher mean values than the control group on mainly 
ophryon and mouth areas (Figure 2c), consistent with limited blood 
circulation of ischemic stroke patients, hence darker/bluer center 
of the face. We further computed the associations between each 
pixel of R, G, or B channel with the CNN model predicted stroke 
probability score (Figure  2c). The continuous associations showed 
a highly similar but more augmented pattern than the differential 
pattern (Figure 2c,d), suggestive of a more quantitative capability of 
the AI model than simple differential pattern analysis. The pattern 
could also be seen by the average blue channel intensity at differ-
ent stroke probabilities (Figure 2d). Consistent with our CNN model, 
the PLS-DA model with two components highlights increased blue 
channel intensity at the center of the face (Figure S1e), further sup-
porting that central face blue intensity increase is the true biological 
signal predictive of stroke regardless of the types of models used. 
The subtle color changes were very hard to be detected by the 
naked eye but could be detected with high sensitivity by our CNN 
model. In contrast, the depth information showed no significantly 
differential pixels (Figure  S1f), suggesting 3D information was not 
very relevant for stoke recognition. The model feature importance 
calculated by Grad-Cam (Selvaraju et al., 2020) also showed enrich-
ment at the ophryon and upper nose areas, consistent with the dif-
ferential pixel maps (Figure S1g). Indeed, adding 3D information to 
the AI classifier decreased, rather than increased, the classification 
cross-validation AUC to 0.88 after the model ensemble. That 2D 
images allow more accurate CNN model prediction than 3D images 
may be due to higher noise in the 3D structure than in texture im-
ages for stroke detection, thus hindering model performance. This is 
consistent with the biological origins of the signals. The 2D texture 
images, in particular the darkening in the blue channel, may reflect 
blood reduced blood flow to the central face, which reflects that to 

the brain, the root cause of stroke, while the drooping of the lower 
face observed on 3D facial contours are more likely a consequence 
of stroke—neural muscular impairment.

Although the 3D images showed less power for CNN diagnosis 
model, some distances between 3D facial landmarks were associ-
ated with stroke probability. Most of the distances between lower 
face contour and other facial landmarks showed positive associa-
tions with stroke probability (Figure S1h), suggesting that the lower 
face contour overall droops. Longer distance between nose and 
mouth are also observed, suggesting a more obvious descent of the 
mouth (Figure S1h). We also labeled some typical features on face 
for direct observation (Figure  S1i). This area overlapped with the 
stroke-associated region in the blue channel in Figure 1d and was 
consistent with the mouth and eye corners descent on the vertical 
Y axis shown by stroke probability partial least square regression 
model on the 3D vertices (Figure S1j).

Among patients with MRI and CT imaging data, 78, 34, and 
33 are diagnosed as anterior, posterior, and mixed, respectively. 
Although the sample size precludes directly classifying the ante-
rior versus posterior, we examined the model-predicted probability 
score distribution of each group and found no significant difference 
between the anterior and posterior groups but a marginally signifi-
cantly higher stroke probability score for mixed stroke than the an-
terior stroke, suggestive of a slightly higher severity (Figure S2a). We 
further computed the CNN model prediction accuracy in the three 
groups. At the model probability score cutoff at 0.40, the 34 poste-
rior samples show an accuracy of 0.79, while the anterior and mixed 
stroke show similar accuracies of 0.68 and 0.70. These suggest that 
although these subtypes may differ in severity, the facial signatures 
(darker ophryon) are similar, which is indeed the case by comparing 
the average blue channel signals of the three groups versus samples 
with low stroke probability (Figure S2b).

2.3  |  Associations of CNN model stroke probability 
with clinical markers

We next investigated the associations between CNN stroke prob-
ability and clinical parameters in the electronic medical records from 
Ruijin Hospital. Six clinical parameters were significantly differen-
tial (p < 0.05) in stroke-negative and -positive groups under a stroke 
probability threshold of 0.4 (Figure 3a, Figure S2c). Among these six 
biochemistry parameters, some of them have already been demon-
strated as an auxiliary biomarker to predict the poor prognosis of 
stroke, for example, the white blood cell counts and blood glucose 
level (Chen et al., 2022).

Fibrin degradation product (FDP) as a marker of coagulation 
showed a significant increase in positive group (Mann–Whitney 

F I G U R E  1 The clinical symptoms and diagnosis process of samples. (a) The flowchart of diagnosis, preprocessing, and utilization of 
samples. (b) Venn diagram of clinical symptoms of standard pipeline confirmed stroke samples in emergency room diagnosed by clinical 
experts. (c) Diagnosis status of Ruijin clinical confirmed stroke samples. +: Positive, −: Negative, 0: Missed. (d) The flowchart of image 
collection and preprocessing. (e) Strategies for model training on relatively small size of samples, with their aims listed and effects tested.
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F I G U R E  2 Model performance and interpretation. (a) The flowchart of this study. The texture images, after preprocessing, are fed to 
CNN networks for predicting stroke probability. The probability is utilized for model interpretation and downstream analysis, including 
independent cohort validation, model features interpretation, blood indicator association, and predictive power of future stroke incidence. 
Facial images are synthetic average face. (b) The ROC curves and AUC values on cross-validation and independent cohorts. The red and 
green curves correspond to 10-fold cross-validation and independent dataset validation, respectively, with shaded areas indicating 95% CI. 
The red dot indicates the probability threshold of 0.40 used to classify positive and negative groups. (c) Differential pixel maps between 
model training control and stroke groups in comparison to AI model predicted stroke probability correlated features. The two texture images 
in the first row are average images of control and stroke groups, respectively; the bottom three maps in the left column are differential maps 
in which the color intensity corresponds to significance level (FDR <0.05) determined by Mann–Whitney test, with red and blue indicating 
a higher or lower mean value in stroke group. The bottom three maps in the right column are maps of intensity correlations to AI model 
calculated stroke probability in red, green, and blue channels, respectively. Color corresponds to significant RCC values (FDR <0.05). All 
the white pixels indicate non-significant areas. Facial images are synthetic average face. (d) Average blue channel pixel intensity at different 
stroke probabilities given by the CNN model. Pixels with values <60 are filtered and visualized as white.
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test p = 0.0153). D-dimer, another coagulation marker, was also 
detected by computing Spearman rank correlation coefficient 
(RCC) with stroke probability (Figure  S2d). These parameters on 
circulation functions are consistent with the clinical manifesta-
tions of ischemic patients and usually indicate coagulation events 
(Zeng et al., 2013).

Another group of significant markers was on immune functions, 
including significantly increased neutrophil count and percentage and 
leukocyte count in stroke group, with p = 0.0008, 0.0460, and 0.0022, 
respectively (Figure 3a and Figure S2c). Neutrophils can leak from lep-
tomeningeal vessels and reach the brain after ischemic stroke (Perez-
de-Puig et al., 2015). Other studies found that neutrophils increased 
in peripheral blood after stroke, which is associated with a worse out-
come in patients (Xia et al., 2020). Neutrophophil counts peaked at 
12 h after stroke in mice (Xia et al., 2020). Deletion of the PKM2 gene 
can limit the overactivation of neutrophils, thus improving stroke out-
comes, including reduced infarcts and improved cerebral blood flow 
(Dhanesha et al., 2022). Leukocyte count also increases in hyperacute 
ischemic stroke patients (Kollikowski et  al.,  2020), and peripheral 
polymorphonuclear leukocytes are activated in ischemic stroke (Mo 
et al., 2013). These are all highly consistent with our results. The last 
two significantly differential markers were blood metabolites, includ-
ing increased blood glucose and urinary casts in stroke group, with 
p = 0.0268 and 0.0376, respectively (Figure 3a). Consistent with our 
findings, hyperglycemia often accompanies patients with ischemic 
stroke and is related to worse clinical outcomes and larger infarct 
size (Kruyt et al., 2010). The presence of urinary casts is a marker of 
kidney function, which is known to affect the pathogenesis of acute 
ischemic stroke (Chelluboina & Vemuganti, 2019). Spearman RCC also 
identified two metabolic markers uric acid and creatinine, indicating 
a worse kidney function to be significantly positively associated with 
stroke probability (Figure S2d).

The significant markers identified in our differential feature anal-
ysis include well-established blood coagulation markers like FDP, as 
well as immune cell counts such as neutrophils and leukocytes. These 
findings are consistent with previous research and align with our clin-
ical knowledge, lending confidence to our results. We further per-
formed the Benjamin–Hochberg correction to the P values for clinical 
markers. The neutrophil counts, leukocyte counts, and the rank sum 
of FDP and glucose remain significant after correction (FDR <0.15).

FDP, neutrophil, and leukocyte counts were also correlated 
with stroke probability, shown by the significant Spearman RCC 
(Figure S2d), indicating robustness of these associations. Significant 
negative correlation between mean hemoglobin concentration and 
stroke probability was also detected by RCC, potentially indicating a 
low oxygen level in circulation, consistent with the darkened ophryon 
pattern (Figure  S2d). Similarly, the significant markers identified by 
RCC encompass several typical blood coagulation markers such as 
FDP and D-dimer, immune cells including neutrophils and leukocytes, 
and mean hemoglobin levels that align with previous clinical knowl-
edge, further reinforcing our confidence in the correlation results. 
After Benjamin–Hochberg correction to the RCC P values, adenosine 
deaminase, neutrophil counts, FDP, and the rank sum of leukocyte 

counts and glucose are still significant (FDR <0.2). Thus, for the pur-
pose of identifying potential novel markers, not applying corrections 
to p-values allows us to cast a wide net and detect promising leads for 
further investigation, given the inherent trade-offs between statisti-
cal rigor and exploratory analysis in hypothesis generation. Overall, 
these results demonstrated the ability of our model to detect molec-
ular hints and further confirmed the reliability of our model.

While FDP is a relatively well-known marker for clinicians, the sig-
nificant association of neutrophils with stroke may not have garnered 
as much attention in clinical practice. Therefore, it can indeed be 
considered a novel indicator with potential utility in clinical settings. 
Moreover, the identification of two metabolism markers that haven 
not received significant attention from scientists and clinicians under-
scores the value of our research. Bringing attention to these mark-
ers broadens the scope of clinical evaluation for patients undergoing 
blood tests and may enhance clinicians' ability to comprehensively as-
sess patients to improve diagnostic accuracy and gain deeper insights 
into patient health to design tailored effective treatments.

To further infer the interactions among stroke probability-
associated blood factors, we applied causal inference test (Millstein 
et al., 2009) to clinical markers to identify tripartite regulation net-
works promoting stroke risk (see Section 4). We constructed two 
causal networks by setting the significant variables (Figure  3a, 
Figure S2c) as the mediators, or drivers, and the remaining clinical 
variables as drivers or mediators, and then visualized them as one 
combined network. We found that neutrophil percentage formed 
a positive feedback circuit with D-dimer and then progressively 
promoted the stroke probability (Figure  3b). However, increased 
phosphorous and bicarbonate potentially depleted neutrophil count 
and alleviated stroke risk. It not only confirmed the importance of 
neutrophils in ischemic stroke, consistent with the fact that neu-
trophils were known to affect ischemic stroke by neutrophil ex-
tracellular trap (NET) (Denorme et  al.,  2022) but also reflected a 
complex regulation network (Figure 3b). Leukocyte count and uric 
acid also manifested a pattern of positive feedback, consistent with 
previous results that hyperuricemia often affected neutrophil func-
tion (Lowell,  2022) (Figure  3b). Another regulation feedback was 
between basophil percentage and glucose level. Unlike positive 
feedback, glucose and basophil percentage repressed another one. 
Elevated glucose levels can directly increase stroke risk while simul-
taneously repressing the percentage of basophil, then elevating the 
stroke risk (Figure  3b). It implied that higher glucose may interact 
with immune system to increase stroke risk, which is consistent with 
the fact that hyperglycemia often induces a worse outcome (Kruyt 
et al., 2010), and highlights the importance of glucose management 
for ischemic stroke patients. Altogether, the metabolites (Uric acid, 
Glucose, Bicarbonate) and immune cells (Neutrophil, Basophil, 
Leukocyte) and their interactions are inferred to regulate the stroke 
etiology and development. This network reflected the complexity of 
a non-linear dynamic biological system. Overall, the above results 
not only reinforced the reliability of our model but also helped sci-
entists to find novel markers and investigate potential mechanisms 
behind acute ischemic stroke.
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2.4  |  Comparison of AI model to MRI and CT

We further compared our model with the golden standard MRI and CT 
imaging. After model is trained and the stroke probability assigned to 
each sample, we further categorized ischemic stroke patients based on 
their medical imaging status derived from CT/MRI results. Here, our 
diagnosis model is exclusively based on facial images, with the output 
being the probability of ischemic stroke using only facial images as 
input. Model training does not require CT/MRI images. In our study, 
we utilize CT/MRI images solely to classify different statuses of stroke 
patients and compare them with the accuracy of our CNN prediction 
model in downstream analysis. This step is intended to demonstrate 
the robust performance of our diagnosis model. The stroke samples 
were divided into three diagnosis statuses: positive (+), negative (−), 
and missed (0) under MRI or CT. In group with MRI or CT imaging posi-
tive, the accuracy of four subgroups indeed decreased from double 
positive (MRI+/CT+), single positive (MRI0/CT+, MRI+/CT0) to contra-
dictory group (MRI+/CT−), as expected (Figure 3c). The group MRI0/
CT− possibly corresponded to a common scenario of false negative im-
aging of CT for early-stage stroke, potentially reflecting the pre-CT di-
agnosis ability of our model (Figure 3c). Although the last group (MRI0/
CT0) lacked of imaging evidence, the accuracy was surprisingly high, 
and this was due to very severe symptoms that no MRI or CT was re-
quired for diagnosis by clinicians (Figure 3c). Interestingly, the accuracy 
of MRI+/CT+ stroke group exceeded 0.80, implying a comparable diag-
nosis capability of our CNN model to MRI imaging (Figure 3c). Overall, 
our stroke face recognition CNN model is accurate, robust, convenient, 
and economical. Using our facial image-based prediction model, the 
process of image capture, preprocessing, and prediction together takes 
only several minutes, in comparison to hours or days of waiting for CT/
MRI imaging and analysis.

2.5  |  Forward prediction of stroke risk in the 
near future

When we further analyzed the false positive and true negative of 
Ruijin control under a cutoff of 0.40 (Figure  S2e), surprisingly, we 
found that the coagulation makers FDP (p = 0.004), leukocyte count 
(p = 0.01) and neutrophil count (p = 0.044) also significantly in-
creased in false positive group (Figure 3d). This suggested that the 
false positives might not be all attributable to model error, but more 
likely to indicate higher stroke risk; that is, the AI stroke score might 

be predictive of stroke events in the near future. In order to test this, 
we conducted patient recalls for the false positives and true nega-
tives in the Ruijin control cohort (visiting patients for diseases other 
than stroke); 57 and 92 cases were retrieved, respectively. During 
the period of approximately 2 years from data collection to present, 
3 in the 57 false positives have had stroke, while only one in the 92 
true negatives has had stroke, with the odds ratio of 4.84 between 
the two groups (Figure 3e). These remarkable forward risk prediction 
results by the short-term longitudinal (rather than cross-sectional) 
study suggested the facial image-based stroke AI predictor was a 
powerful and convenient tool for stroke screen and risk assessment, 
and enabled the detection of high-risk yet non-stroke individuals for 
timely and early intervention to prevent disease development.

2.6  |  Potential basis for facial image-based stroke 
prediagnosis and early prediction

The significant correlations of our model-predicted stroke score to 
the patients' biochemical tests indicative of general vascular prob-
lems raised the hypothesis that the link between the facial images 
and stroke is related to vascular problems. Indeed, we found chronic 
inflammation and elevated coagulation markers (elevated levels of 
glucose, FDP, leukocytes, and neutrophils) that alter the general 
microvessel network manifest a similar phenotype—to the model-
predicted increased stroke probability—blue hue in the center of 
the face (Figure S3a,b). In addition to the most important facial fea-
ture associated with our model's prediction score and accuracy, the 
bluing of the center of the face (Figure  S3c,d), we also observed 
that high inflammation and coagulation also associated with longer 
distances between the lower face contour and other landmarks 
(Figure S3c), drooping eyes and mouth corners (Figure S3d), similar 
to the contour and shape changes correlated to our model predicted 
stroke score (Figure S1g,h).

In addition, a TIA, often called a ministroke, is a short period 
of symptoms similar to those of a stroke caused by a brief block-
age of blood flow to the brain, and is predictive of an eventual 
stroke within a year (https://​www.​mayoc​linic.​org/​disea​ses-​condi​
tions/​​trans​ient-​ische​mic-​attack/​sympt​oms-​causes/​syc-​20355679). 
Therefore TIA, sharing a similar cause for stroke—blockage or re-
striction of blood flow to the brain, but more transient than stroke, 
can be used to further test our hypothesis. If the facial symptoms 
reflecting blockage or restriction of blood flow to the brain were 

F I G U R E  3 Associations of CNN model stroke probability with clinical metrics. (a) Significantly differential (p < 0.05) clinical markers 
between predicted stroke positive and negative samples separated by CNN model stroke probability 0.4. (b) The causal inference 
interactions from clinical markers to stroke probability. The line color and width represent the sign of PCC between two nodes and -logQ 
value of the causal test. FDR (Q value) of CIT <0.2 together with P value of PCC between each node pair are set to be the threshold. (c) The 
stroke probability boxplot and accuracy (green dots and line) of each stroke diagnosis status group. +: Positive, −: Negative, 0: Missed. (d) 
The significant differential markers between the true negative and false positive samples of Ruijin controls. (e) The stroke incidence ratio 
of false positive and true negative groups of Ruijin control. CNN model stroke probability of the three and one stroke samples in the false 
positive and true negative groups. (f) Stroke probability distribution of TIA patients. (g) Significant correlation between stroke probability 
and chronological age for the elderly population (>50 years) of Jidong and Majiagou cohorts.
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the medical basis for early prediction of stroke by our model, we 
would expect the model gives high stroke score for TIA patients. 
Indeed, among the 10 TIA patients, 8 are predicted as stroke with 
stroke scores> = 0.4 and only 2 below 0.4 (Figure 3f). This further 
suggests that our model, by detecting the root cause, the blood flow 
restriction to the brain, rather than the direct blockage site, is more 
powerful than CT or MRI in early prediction of stroke. CT and MRI 
directly detect the blocked area, while the facial image does not 
directly image the block sites. It may, however, detect an increase 
in the blue hue resulting from restriction of the blood flow to the 
center of the face. Therefore, facial images may not only detect an 
acute stroke phenotype-restricted blood flow but can also detect 
the root cause, a chronic condition reflecting the direct risk factor 
of stroke, just like high coagulation factors in the blood and minis-
trokes do; thus the chronic risk factor quantification can have the 
power of predicting the frequency or incidences of stroke, an acute 
symptom, in advance for early detection and warning.

3  |  DISCUSSION

Overall, our study successfully identifies a novel facial signature and 
easily-accessible biomarker of stroke and constructs a fast diagnosis 
AI model that may assist clinical decisions and even daily risk evalu-
ation for acute ischemic stroke. The model computed probability 
is also associated with known blood stroke prognosis biomarkers. 
Other blood markers, identified by the causal inference test to con-
tribute to our model computed probability, indicate that the facial 
image builds a connection among several blood markers, which may 
have application prospects in related disease predictions.

Deep learning models often rely on large sample size. Here, to 
digitally double the sample size for deep learning, we flipped each 
image as data augmentation. Furthermore, using light networks with 
few parameters like Xception and EfficientNet, using pretrained net-
works by ImageNet data for transfer learning, using model ensem-
bles, using strictly age- and sex-matched controls to exclude age and 
sex influences, and minimizing false positive rate by training with 
the controls samples three times as the stroke samples, altogether 
enabled our deep learning model trained to learn a stroke-specific 
signal with low false positive rate on a relative small set (for deep 
learning models) of stroke samples (Figure 1d). This is confirmed by 
the high AUC of cross-validation and independent test dataset val-
idation, as well as the correlation of model prediction score to clini-
cal stroke markers. Our model recognizes the darkening in the blue 
channel in the center of the face as facial signature of acute stroke, 
which coincides well with the stroke etiology—block of circulation, 
and predicts previously known and unknown molecular underpin-
nings, including coagulation of the blood and neutrophil activation. 
Furthermore, our stroke probability showed consistency with MRI/
CT results, with a comparable capacity to MRI.

In clinical practice, it is important to note that only severe stroke 
patients typically exhibit obvious facial symptoms such as asymme-
try in the eyes and mouth. Most patients cannot be diagnosed solely 

based on insignificant facial features, leading clinicians to follow a 
standard diagnosis workflow as outlined in the 2018 China Ischemic 
Stroke Diagnosis Guidelines. Clinical experts typically assess pa-
tients for body symptoms like leg paresthesia and neurological 
symptoms such as dizziness or headache. Subsequently, CT/MRI im-
aging, considered the golden standard approach, is employed. This 
comprehensive diagnostic workflow, while effective, often proves 
time-consuming and costly. It also places considerable pressure on 
doctors tasked with diagnosing and evaluating stroke risk status. 
Our facial image-based stroke prediction model not only provides 
a rapid prediagnosis tool for alleviating the burden on clinicians and 
for routine stroke screening and monitoring, it also reminds the clini-
cians that in addition to the well-known stroke symptoms, the dark-
ening or bluing of the center of the face is another symptom to look 
for, although it is very hard for the naked eye to detect.

In addition to the well-established coagulation marker FDP, our 
analyses have also identified immune markers such as neutrophil 
counts and metabolism markers like glucose (Figure  3a). Patients 
with elevated levels of these markers correspond to higher stroke 
probability. Furthermore, our analysis reveals a higher occurrence 
ratio of stroke in samples with higher probability (Figure 3e). Given 
these findings, it is crucial for doctors to pay close attention to pa-
tients exhibiting abnormal blood markers and promptly arrange CT/
MRI scans and appropriate therapies for suspected cases. Together 
with our CNN model, such a proactive approach can potentially lead 
to early detection and intervention, improving patient outcomes and 
reducing the impact of stroke.

The quantitative nature of these associations also indicated that 
the model predicted stroke probability was quantitative enough to 
indicate not only the presence of stroke but also stroke severity and, 
most importantly, stroke incidence in the near future, which was ex-
tremely helpful for the prevention of the deadly disease. Thus, the 
model could be applied to daily monitoring and dynamically evaluat-
ing stroke risk.

Although our training stroke samples were from only one cen-
ter, the model could be generalized to an independent cohort that 
included 15 samples from another center, and the saturation anal-
ysis indicated that the model performance had approached sta-
bility on both training and independent datasets, still with room 
to increase (Figure S4a). In the future, multicenter collection from 
different cities and even larger sample size may further boost 
the model's accuracy and generalizability. Furthermore, with 
more longitudinal data, a model can be trained to directly learn 
the probability and time to stroke incidence in the next 5 years. 
It would be interesting to see whether the model trained on lon-
gitudinal data and models trained on cross-section data converge 
on the same features associated with stroke probability. Given the 
future stroke predictive power of our current model, at least some 
of the features must be shared among models trained on cross-
section and longitudinal data.

Furthermore, as an age-related condition, the etiology of 
ischemic stroke encompasses age-induced vascular dysfunction 
(Peña-Silva et al., 2012), immune disorder (Gullotta et al., 2023), 
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and other factors. Our diagnostic model's computed stroke prob-
ability shows a significant positive correlation with chronological 
age among the elderly population in the Jidong and Majiagou co-
horts (Figure  3g). Moreover, the aging rates derived from CNN 
aging clocks trained by perceived age and chronological age 
(Methods) also manifest significant associations with stroke prob-
ability in elderly population of the Jidong cohort (Figure  S4b,c). 
This not only aligns with previous research but also reinforces 
the reliability of our model. These findings motivate us to explore 
stroke prevention strategies targeting aging mechanisms, such as 
the use of anti-aging medications and regular assessment of aging 
progression (Wang et al., 2023; Xia et al., 2021). By incorporating 
our model's potential for assessing stroke risk, we anticipate a re-
duction in stroke-related mortality and morbidity, alleviating the 
societal burden of age-related diseases and promoting initiatives 
for healthy aging.

4  |  METHODS

4.1  |  Data collection and preparation

From September 2020 to March 2022, after informed consent, 
we collected facial images of patients who came to the emer-
gency department of Ruijin Hospital with acute stroke similar 
symptoms. After completing physical examination, head MRI or 
CT examination and standard diagnosis and image preprocessing, 
223 acute ischemic stroke samples were confirmed by 2018 China 
Ischemic Stroke Diagnosis Guidelines. We have excluded all the 
other confounding diseases like hemorrhage, Parkinson's disease, 
and TIA. To eliminate the confounding effects of age and sex, we 
finally kept 185 MRI/CT confirmed stroke patients and 551 non-
stroke or healthy people as training dataset. The remaining 38 
unmatched stroke patients are taken as a part of the independent 
test dataset. The inclusion and exclusion criteria of potential pa-
tients are listed as follows:

Inclusion criteria: (1) face image information of patients with 
chief neurological and psychiatric symptoms (dizziness, headache, 
numbness of limbs, inflexible speech, weakness, physical activity 
disorder, etc.); (2) clinical symptoms and auxiliary examination re-
sults consistent with suspected stroke. (There was no restriction on 
age, gender, and ethnicity.)

Exclusion criteria: (1) patients who could not cooperate with data 
collection; (2) patients with unstable vital signs; (3) those unwilling 
to sign the informed consent form; (4) history of previous facial ab-
normalities (plastic surgery, tumor, trauma, facial neuromuscular dis-
ease, etc.).

The inclusion and exclusion criteria of controls are listed as fol-
lows: Individuals visiting the emergency room and diagnosed with 
non-stroke-related diseases are considered controls, along with 
healthy samples obtained from other centers. Then, only age and 
sex-matched samples to stroke patients are used as controls in 
the training cohort to rule out age when training our models. For 

independent test set, in order to maximally test the model's general-
izability, controls are not age- and sex-matched.

4.2  |  Preprocessing

After the image collection process, each sample corresponds to 
both a 2D texture image and a 3D face point cloud file. Despite our 
collection criteria requiring samples to face the exact front, there 
may still be some pose and position bias present. Therefore, we 
apply a step called “pose correction” to all samples. This ensures 
that each face has the same posture and position, thereby elimi-
nating potential confounding factors during model training. Once 
the pose correction is completed, we can simultaneously map the 
texture image and the 3D face information with the same resolu-
tion. Subsequently, we crop the images to retain only the facial area, 
followed by resizing them to a standardized size of 224 × 224 pixels. 
The step-by-step procedures for this process are explained as fol-
lows with rigorous mathematical formulae described in our previous 
study (Xia et al., 2020).

1.	 Initially, we identify the nose tip point by fitting a sphere with 
a radius of r and a center at (OX, OY, OZ). For each vertex 
V, we utilize all vertices within a distance of <1.5 cm to fit 
a sphere and calculate the loss function. The point with the 
lowest value of the loss function is defined as the nose tip. 
The output provides the coordinates of the nose tip.

2.	 Next, we consider all points around the nose tip within a dis-
tance of less than 5 cm to correct the pose, with the objective of 
aligning every sample to face straight ahead. We apply Principal 
Component Analysis to these points to obtain the eigenvalues and 
eigenvectors. The eigenvectors corresponding to the top three ei-
genvalues are selected as the base vectors of a new coordinate 
system. Subsequently, the three-dimensional face is rotated into 
this new coordinate system. The output provides the corrected 
3D face information. This correction step can be iterated several 
times to achieve a more precise pose correction.

3.	 Next, these 3D vertices represent points in three-dimensional 
space with X, Y, and Z coordinates, rather than a conventional 
2D image format used in CNN networks. Specifically, we project 
these 3D vertices onto the X–Y plane with a defined resolution of 
0.1 cm. The Z-axis value for each vertex is retained through the 
use of z-buffering and scan line algorithms. As a result, the re-
sulting 2D representations of the 3D information are referred to 
as “depth images.” The outputs of this process are a 2D texture 
image and a depth image. In the depth image, each pixel Di,j value 
represents the Z-axis height of pixel Ti,j in the 2D texture image.

4.	 Finally, all background areas of the images are cropped to retain 
only the face, after which they are resized to dimensions of 224 
× 224 pixels. The output of each sample comprises a 224 × 224 
texture image (three channels corresponding to RGB) and a 224 
× 224 depth image. These 224 × 224 images are then utilized for 
model training purposes.
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4.3  |  Model training

The stroke and control samples are randomly split into 10 sec-
tions, followed by copying stroke samples three times and flip-
ping each image from left to right as data augmentation. For 
10-fold cross-validation, the data was divided into 9 training 
and 1 test sets, and parameters were optimized for the AUC 
of the aggregation of all 10 folds of the test sets. Xception, 
Resnet50, VGG19, and EfficientNetB1 models are trained based 
on texture images with an epoch of 20, respectively. We first 
drop the last full connection layers and initialize the other layers 
with pretrained ImageNet weights as transfer learning. Then we 
add the same structure of the last layers of each network but 
only set the classification nodes as 2. All deep learning network 
operations are deployed by the Keras module in Tensorflow 
2.4. Here, we utilize the Adam optimizer with a learning rate of 
0.0001 to optimize the loss function of binary cross-entropy. As 
each sample has gone through data augmentation, probability 
of images belonging to one sample is averaged to return a final 
stroke probability under each model. Probability of 0.40 was 
taken as the threshold to classify samples, followed by com-
puting accuracy, precision, false positive rate, and true positive 
rate. Then ROC is generated and AUC is computed to evaluate 
model learning ability.

4.4  |  Model ensemble

Considering the model preference of each deep CNN, we used 
the weighted average of the four models to derive a final prob-
ability of stroke. The AUC of each network is summed and nor-
malized to 1 to return the 4 weights as in the formulae below. 
Then, each output is multiplied by the corresponding weight and 
summed together:

4.5  |  Confidence interval

Each sample prediction is a Bernoulli trial, thus obeying a bino-
mial distribution. Gauss distribution is utilized to mimic binomial 
distribution under large sample size. The confidence interval can 
be computed as the formula below, in which N is the sample size, 
Accu is the cohort accuracy, z is the set to 1.64 when significance 
level is 95%:

4.6  |  Differential pixel map

The RGB values of each pixel are split into three red, green, and blue 
channels, together with depth channel for the hypothesis test, re-
spectively. Mann–Whitney U test followed by Bonferroni correction 
(q < 0.05) is used to identify significantly differential pixels between 
control and stroke groups.

4.7  |  Grad-Cam

Grad-Cam algorithm (Selvaraju et al., 2020) is used to interpret the 
facial images importance. Each of the trained models is applied to 
each sample, and then the last convolution kernel from each model is 
saved and fed to Grad-Cam to calculate feature importance on that 
sample. Only importance maps of samples with true predictions are 
kept. All the feature importance maps of four CNN models are aver-
aged to generate a final heatmap for visualization.

4.8  |  Facial landmarks and features detection

Seventy-two salient 2D landmarks coordinates of texture images 
are detected by Python package “face_recognition,” followed 
by finding corresponding 3D landmarks based on mapping files 
obtained from the preprocessing step. The pairwise Euclidean 
distances are computed between each landmark pair. Then, the 
Spearman correlation coefficient (RCC) is calculated between 
each feature and stroke probability. The −logP value matrix is clus-
tered by hierarchical clustering and used to order and visualize 
RCC matrix.

4.9  |  Face dense registration

3D obj information after posture correction in preprocessing step is 
first aligned with the nose tip and is moved to (0,0,0). 3D obj informa-
tion is then densely registered to a face template by Meshmonk (White 
et al., 2019) in Matlab to enable analysis using traditional machine learn-
ing. After registration, each sample shares the same number (7906) of 
vertexes, and each vertex represents the same face location.

4.10  |  Stroke probability projection on 3D 
facial image

Partial least square regression (PLSR) is applied to model the rela-
tionship between CNN model stroke probability and the registered 
3D coordinates of the facial images. The number of components is 
set to 2 in PLSR model. PLSR coefficients on the x, y, or z axis are 
visualized on the face template.

K = 1∕

n=4
∑

i

AUC i

Final Probability =

n=4
∑

i

K × AUC i × Probability i

Int = z ×

√

(Accu × (1 − Accu))

N
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4.11  |  Clinical parameters analysis

Electronic medical records are retrieved from Ruijin Hospital, and 
only variables available for more than 40 subjects are used for 
downstream analysis. Based on CNN model stroke probability, the 
samples with a probability more than or less than 0.40 are taken as 
positive or negative groups, respectively. Mann–Whitney U test or 
RCC is utilized to detect significantly differential (p < 0.05) clinical 
markers between the two groups.

4.12  |  Causal inference test

Causal inference test (Millstein et  al.,  2009) tool R package “cit” 
(Millstein et al., 2016) is used to infer potential causal interactions 
between clinical parameters and stroke probability (FDR <0.20). 
Pearson correlation coefficient (PCC) is further computed between 
each pair, followed by only keeping p < 0.05 for visualization. We 
separately construct two 3-layer networks. The first network con-
sists of significant markers → the remaining markers → stroke prob-
ability, and the second network consists of the remaining markers → 
significant markers → stroke probability. Then, the two networks are 
combined and visualized together.

4.13  |  Perceived and chronological age-trained 
CNN aging clocks

As described in our previous study (Xia et al., 2020), based on Jidong 
Vectra images, we have trained a perceived or a chronological aging 
clock based on CNNs using either perceived or chronological age. 
The aging clock computes a prediction age for each sample. The 
residue between prediction and chronological age is corrected by 
a locally weighted regression (LOESS) model to rule out age effects 
and taken as the aging rate estimated by each clock. More details of 
model training and correction details can be found in previous study 
(Xia et al., 2020).

4.14  |  Saturation analysis

To test the sufficiency of training sample size for model perfor-
mance, we randomly select samples from the training dataset and 
re-train models, followed by testing the whole independent dataset. 
We randomly selected stroke samples with a number from 35 to 185 
adding approximately 35 samples each time and matched controls 
for model training.
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