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Abstract 24 

How well mRNA transcript levels represent protein abundances has been a controversial issue. 25 

Particularly across different environments, correlations between mRNA and protein exhibit remarkable 26 

variability from gene to gene. Translational regulation is likely to be one of the key factors contributing 27 

to mismatches between mRNA level and protein abundance in bacteria. Here, we quantified genome-28 

wide transcriptome and relative translation efficiency (RTE) under 12 different conditions in 29 

Escherichia coli. By quantifying the mRNA-RTE correlation both across genes and across conditions, 30 

we uncovered a diversity of gene-specific translational regulations, cooperating with transcriptional 31 

regulations, in response to carbon (C), nitrogen (N), and phosphate (P) limitations. Intriguingly, we 32 

found that many genes regulating translation are themselves subject to translational regulation, 33 

suggesting possible feedbacks. Furthermore, a random forest model suggests that codon usage 34 

partially predicts a gene’s cross-condition variability in translation efficiency; such cross-condition 35 

variability tends to be an inherent quality of a gene, independent of the specific nutrient limitations. 36 

These findings broaden the understanding of translational regulation under different environments, 37 

and provide novel strategies for the control of translation in synthetic biology.38 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.19.488838doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.19.488838
http://creativecommons.org/licenses/by-nd/4.0/


3 
 

Introduction 39 

The central dogma connects DNA, RNA, and protein through transcription and translation. While 40 

transcriptional regulation has been extensively studied in the past century[1], how well transcript level 41 

represents protein abundance remains controversial[2, 3]. Despite the overall positive correlation 42 

between mRNA and protein abundance when different genes are compared in bacteria, genes with 43 

similar mRNA abundance may show large differences in protein abundance[4]. Given that a non-44 

negligible portion of the bacterial genome exists as polycistrons, the difference in protein abundance 45 

can be traced to widespread differences in translational capacity between genes, e. g. arising from 46 

mRNA secondary structure, codon usage bias, ribosome binding sites, riboswitches, and leader 47 

peptides[5-9]. Not only do these factors account for differential protein synthesis under steady-state 48 

conditions, but some of them also respond to external stressors, e. g. the hairpin structure in the 49 

5’UTR of pfrA in Listeria opens at high temperatures to improve translation[10]. 50 

Cells regulate their protein expression profiles in response to environmental challenges. While this 51 

regulation is conventionally thought to occur primarily at transcription[11], several recent studies 52 

based on the translatome have revealed gene-specific translational regulation when bacteria are 53 

exposed to heat stress, oxidative stress, or amino-acid starvation[12-15]. These studies specifically 54 

focused on translational regulation in specific genes contributing to stress responses, such as the 55 

heat shock protein (HSP) gene family[16]. However, the universality of translational regulation as a 56 

response to general environmental challenges remains largely unexplored. For instance, nutrient 57 

limitations are fundamental challenges for cells, and E. coli cells are known to cope with different 58 

nutrient limitations by changing ribosomal synthesis and usage strategies [17, 18]. But we do not yet 59 

know if cells also regulate the translation of specific genes in response to nutrient limitations. 60 

Moreover, as transcription and translation are coupled in bacteria[19], it is worth quantifying the extent 61 

to which transcription and translation are regulated in concert to cope with environmental stresses. 62 

To understand the general principles of gene expression, theoretical models have been developed 63 

to provide an integrative picture of translational regulation [20-22]. However, the factors that 64 

contribute to gene-specific translational regulation upon environmental changes are still poorly 65 

understood[23]. In this regard, some researchers have suggested that protein synthesis rates are 66 

tightly linked to tRNA composition and modification, which is known to vary across conditions [24-26]. 67 

However, others suggested that translation efficiency is highly correlated with ORF mRNA structure 68 
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rather than other mRNA features such as tRNA adaptation index (tAI)[27]. Therefore, the underlying 69 

mechanisms of translational regulation in response to environmental changes are worth exploring. 70 

Here we extended our previous research[18] and systematically quantified the total number, bound 71 

fraction, and elongation rates of ribosomes under carbon (C), nitrogen (N), and phosphorus (P) 72 

limitations at different growth rates, and several other growth conditions. Then we extended our 73 

perspective on translational regulation from the global scale to the level of individual genes. We aimed 74 

to examine whether there is gene-specific translational regulation in E. coli responding to different 75 

nutrient limitations, and then explore possible mechanisms. Combining global ribosome profiling with 76 

RNA-seq, we quantified the correlation between mRNA level and translation efficiency both across 77 

genes and across conditions, as well as the variability of translation efficiencies across conditions. We 78 

uncovered a diverse range of gene-specific translational regulations concerted with transcriptional 79 

regulations in response to environmental deficiencies. Intriguingly, several translational regulation 80 

genes are themselves subject to translational regulation, suggesting possible feedbacks. Further 81 

analysis suggested that codon usage may play an important role in gene-specific translational 82 

regulation. Using a random forest model, we quantified the contribution of codon usage towards 83 

condition-dependent translational regulation. This analysis revealed that the cross-condition variability 84 

tends to be an inherent feature of individual genes, independent of particular conditions. These 85 

findings expand our understanding of translational regulation in response to environmental changes, 86 

and suggest novel strategies for effective translation in future synthetic biology.  87 

88 
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Results 89 

Cells adapt to different nutrient conditions through global translational regulations 90 

To explore the translational regulation in E. coli under different environments, we utilized 12 different 91 

growth conditions (Table 1). In an effort to focus on distinct yet stable steady-state growth conditions, 92 

we grew E. coli in chemostats with dilution rates of 0.1 and 0.6 h-1 under limitations for carbon (C), 93 

nitrogen (N), and phosphate (P). We also grew two mutant strains in chemostats, ΔrplA and ΔleuB, 94 

with the same dilution rates of 0.1 and 0.6 h-1. rplA encodes a component of the 50S ribosome subunit 95 

[28, 29] and leuB is involved in leucine biosynthesis[30]. These two mutant strains thus enabled us to 96 

probe how single-gene mutations that disrupt distinct aspects of the translation process affect the 97 

overall pattern of translation. In addition, wild type E. coli was also grown in batch culture using both 98 

glucose minimal media and defined rich MOPS media, with measured growth rates of 0.9 and 1.8 h-1, 99 

respectively. 100 

As observed in a previous study[18], P-limited cells consistently exhibited lower RNA-to-protein 101 

ratios than C-limited or N-limited cells. ΔrplA cells exhibited a higher RNA-to-protein (R/P) ratio than 102 

other conditions at the growth rate of 0.6 h-1, consistent with the significantly reduced activity of 103 

ribosomes for ΔrplA cells[31]. All other conditions are located on a single line of R/P ratio versus 104 

growth rate (Fig. 1A). The free ribosome pools decreased as growth rate increased across all the 105 

nutrient-limited conditions (Fig. 1B). Our previous study suggested that E. coli differentially tune 106 

multiple ribosomal features, including ribosome total number, elongation rate, and active fraction, to 107 

achieve the same growth rate of 0.1 h-1 under different nutrient limitations [18]. The current results 108 

confirmed that this pattern extends to a higher growth rate of 0.6 h-1 (Fig. 1C-E). Meanwhile, under 109 

batch conditions, all three of these ribosomal features reached very high levels (Fig. 1F). The 110 

distribution of ribosome density along mRNAs also revealed differences between conditions: For C- 111 

and N-limited conditions, there was a higher ribosome occupancy near the start codon, particularly at 112 

the lower growth rate (Fig. 1G and the inset). Across all conditions, after the first few codons, the 113 

ribosome density exhibited no significant decrease along mRNAs (Fig. 1G). In summary, cells adapt 114 

to different nutrient conditions by differentially tuning multiple ribosome-related features, which act 115 

globally on the translation efficiencies of all genes. In addition to such global translational regulation, 116 

we wondered whether there could be gene-specific translational regulation in response to different 117 

environment conditions. 118 
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 119 

Quantifying transcriptome and translatome in E. coli under multiple nutrient limitations 120 

To explore individual gene expression regulation in E. coli under various nutrient conditions, we 121 

quantified the genome-wide transcriptome and translatome by performing RNA-seq and global 122 

ribosome profiling for all the conditions above[32]. After filtering out ribosomal RNA (rRNA) and 123 

transfer RNA (tRNA) species, a total of 4321 genes were used as the reference for mapping. 124 

We then combined ribosome profiling and RNA-seq data to quantify the relative translation 125 

efficiency (RTE, defined as the ratio of the transcript abundance in the ribosome profiling to relative 126 

mRNA level) of each gene under different conditions (see Methods for details). It is worth noting that 127 

the RTE represents the relative occupancy of ribosomal resources devoted to translation, rather than 128 

the absolute protein production rate per mRNA molecule. To avoid the high noise caused by low 129 

mRNA levels, we filtered genes with a cut-off of log10(mRNA RPKM) > 1.5. After filtering, a total of 130 

2914 genes were retained for further analysis. Scatter plots and correlation analysis of per gene 131 

mRNA and ribosome level showed high data reproducibility across different replicates (Sup Fig. 1-2). 132 

Since RTE is the ratio of footprint densities to RNA-seq read densities, it could be sensitive to the 133 

changes of mRNA levels. To test whether RTE truly reflected differences in translation between 134 

genes, we analyzed the expression pattern of genes from the dusB-fis operon and the F0F1 ATP 135 

complex, which are two typical cases that controlled at translation level with similar mRNA 136 

abundances. dusB and fis are coregulated as part of the same operon, and we observed that their 137 

mRNA levels were comparable. However, because of the highly different mRNA structure[27], their 138 

RTEs showed significant disparities (Sup Fig. 3A), consistent with the results of previous study[27]. 139 

Eight subunits of the F0F1 ATP complex were from a single polycistronic transcript, and the mRNA 140 

levels of these genes were similar (Sup Fig. 3B-C). However, their RTEs varied substantially and 141 

were proportional to their stoichiometry in the F0F1 ATP complex (Sup Fig. 3D), consistent with a 142 

previous study by Li et al.[17] on the quantification of absolute translation efficiency. Thus, these 143 

results confirmed the reliability of RTE in quantifying translational differences among genes. 144 

 145 

mRNA-RTE correlation analysis suggests the preponderance of both gene-specific and 146 

condition-specific translational regulation 147 
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To quantify the correlation between mRNA level and RTE, we analyzed two types of correlation: 148 

across genes and across conditions (Fig. 2A). For cross-gene correlations, we confirmed that, on 149 

average, mean mRNA levels positively correlated with RTEs (Fig. 2B), with a coefficient of 150 

determination (R2) of 0.3. This means that in an average sense, if one gene has a higher mRNA level 151 

than another, it is also likely to have a larger RTE.  152 

Next, we wondered whether the mRNA levels and RTEs of individual genes change in concert 153 

across different conditions. To answer this question, we examined the cross-condition correlation 154 

between mRNA level and RTE for each gene. In contrast to the positive cross-gene correlation, we 155 

found a broad distribution of the 2914 Spearman’s rank correlation coefficients between a gene’s 156 

mRNA levels and its RTEs across the 12 conditions (Fig. 2C, blue). The distribution ranged from -1 to 157 

+1, asymmetrically biased toward negative values. The median of this distribution was -0.23, and 158 

24.5% of the genes exhibited a smaller than -0.5 correlation between their mRNA levels and RTEs 159 

across conditions; only 4.7% of the genes exhibited a larger than 0.5 correlation. To test the 160 

significance of this asymmetric and mostly negative distribution, we randomly scrambled the RTEs 161 

among conditions for each gene and recalculated the 2914 correlation coefficients to obtain a null 162 

distribution (Fig. 2C, grey). As confirmed by theoretical analysis, this null distribution was symmetric 163 

with zero mean (see supplement for details), and visibly distinct from the actual distribution. The 164 

sizable, statistically significant difference between the actual distribution and the null distribution 165 

implied the widespread existence of gene-specific translational regulation, where the RTE of an 166 

individual gene changed in response to different environmental conditions (Sup Fig. 4). 167 

To further explore the possible roles of gene-specific translational regulation, we examined two 168 

genes with highly negative and highly positive mRNA-RTE correlations. For the gene fieF, which 169 

mediates metal-ion transport in response to iron poisoning[33], the correlation coefficient was -0.91 170 

(Fig, 2D). Iron homeostasis is essential for cell survival[33]. For the gene ycaO, which is involved in 171 

the β-methylthiolation of the ribosome complex S12[34], the correlation coefficient was 0.73 (Fig. 2E). 172 

Ribosome abundance has been known to change with growth conditions or cellular status[35]. These 173 

two examples raise one more general question: Do genes with negative correlation and those with 174 

positive correlations perform different classes of biological functions? 175 

 176 

Correlations between mRNA level and RTE link to gene function  177 
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To test the hypothesis that genes with distinctive mRNA-RTE correlations fall into different functional 178 

categories, we performed gene ontology (GO) enrichment analysis for the top 300 genes with the 179 

strongest negative mRNA-RTE correlations across conditions, as well as the top 300 genes with the 180 

strongest positive correlations. We found that the top 300 most negatively correlated genes were 181 

mainly involved in biological processes that may not be affected by our nutrient limitations (Fig. 3A). 182 

These genes, such as nagC, ascG, and kdgR, are essential for the homestasis of metabolism. Other 183 

genes in this group, such as rpoE, lacI, and frmR, respond to inputs such as heat shock, lactose, or 184 

formaldehyde which were not assayed in our experimental condition. It is conceivable that the 185 

negative correlation between mRNA level and RTE for genes in this group reduces the dependence 186 

of protein abundance on conditions. 187 

By contrast, the top 300 genes with the strongest positive correlation were mainly involved in 188 

nutrient utilization, stimulus response, and translational regulation itself (Fig. 3B). These genes are 189 

the key cellular factors that respond to the imposed nutrient limitations. Interestingly, the observation 190 

of strong positive correlation for genes involved in translational regulation hinted at possible direct 191 

feedback, i.e. that genes regulating translation are themselves subject to translational regulation. 192 

Take two typical genes as examples: rplA, encoding a component of the 50S ribosome subunit, 193 

functions in translational regulation [28, 29]. The mRNA level of rplA was significantly upregulated at a 194 

growth rate of 0.6 h-1 comparing to 0.1 h-1. In concert, the RTE of rplA was also significantly 195 

upregulated at the faster growth rate (Fig. 3C). This phenomenon was robust under all three nutrient 196 

limitations, C, N, and P. Similarly, rmf, a translation inhibitor, is also subject to translational regulation. 197 

RMF is a ribosome modulation factor that reversibly converts active 70S ribosomes to a dimeric form, 198 

which is associated with a decrease in overall translational activity during the transition from 199 

exponential growth to stationary phase[36]. Our data show that for rmf, both mRNA level as well as 200 

RTE were significantly down-regulated at faster growth rates, regardless of which nutrient was limiting 201 

(Fig. 3D). 202 

 203 

Gene-specific translational regulation in response to nutrient limitations  204 

Despite the mostly negative distribution of mRNA-RTE correlations for all genes, our former analysis 205 

suggests concerted regulation of both mRNA level and RTE for genes responsive to environmental 206 

changes. To systematically examine such concerted regulation, we analyzed the relative changes at 207 
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both mRNA and RTE levels between pairs of nutrient limitations under the same growth rate of 0.1 h-208 

1. We first compared the expression between C-limited and N-limited cells. We used a cutoff of log2(C-209 

/N-limited mRNA fold change) > 4 and p-value < 0.05 to select a group of differentially expressed 210 

genes at the mRNA level. For genes with significantly upregulated mRNA levels under C limitation, 211 

almost all of their RTE fold changes were also greater than 1, thus exhibiting concerted regulation of 212 

transcription and translation (Fig. 4A, red dots). In the same way, genes with significantly upregulated 213 

mRNA levels under N limitation also showed upregulated RTEs (Fig. 4A, blue dots). Similar 214 

phenomena can be observed when comparing N-limited and P-limited cells: for genes with 215 

upregulated mRNA levels under P limitation, their RTEs were also significantly upregulated (Fig. 4B, 216 

green dots), and similarly for genes upregulated under N limitation (Fig. 4B, blue dots – same genes 217 

as in Fig. 4A). Next, we compared the mRNA level and RTE across C, N, and P limitations in parallel 218 

for the three gene groups selected above. The results further confirmed that mRNA and RTE change 219 

in concert for genes that are specifically expressed under specific nutrient limitations (Fig. 4C-E). 220 

To verify whether these three groups of genes are actually involved in utilization of specific 221 

nutrients, we performed GO analysis for each group. The resulting functional enrichment confirmed 222 

our hypothesis. Genes with concerted upregulation of both mRNA level and RTE under C limitation 223 

were mainly involved in the transport of carbon-containing compounds or cell locomotion (Fig. 4F). 224 

For example, the gene yjcH (marked in red in the upper right region of Fig. 4A) encodes a protein 225 

involved in acetate catabolism and transport[37], while the genes mglA-C are involved in galactose 226 

transport, which also responds to C limitation[38]. Other genes in this group, flgC-F, are involved in 227 

flagellar assembly. Genes with concerted upregulation of both mRNA level and RTE under N 228 

limitation were mainly involved in nitrogen utilization (Fig. 4G). The genes rutA-G (marked in blue in 229 

the lower-left region of Fig. 4A) in the rut pathway are typical examples: they contribute to derivation 230 

of nitrogen from pyrimidines [39, 40]. Similarly, genes with concerted upregulation of both mRNA level 231 

and RTE under P limitation were mainly involved in phosphorus metabolism (Fig. 4H). These genes 232 

mainly consist of the phn gene cluster (marked in green in the lower-left region of Fig. 4B), which is 233 

induced under phosphate limitation and plays an important role in deriving phosphate from 234 

phosphonate degradation [41, 42]. The same analyses were performed for the growth rate of 0.6 h-1, 235 

with consistent results, except for no significant observed difference in RTE between C and N 236 

limitations for the genes involved in nitrogen utilization (Sup. Fig. 5).  237 
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To test for gene-specific translational regulation between different growth rates, we performed 238 

similar analyses at the growth rates of 0.1 h-1 and 0.6 h-1 under the same nutrient limitation. 239 

Intriguingly, there were no evident differences in translational regulation between the two different 240 

growth rates (Sup. Fig. 6A-C). Even the highlighted subsets of genes identified in Fig. 4, involved in 241 

utilization of specific nutrients, showed no significant difference of RTE between different growth rates 242 

under the same types of nutrient limitation (Sup. Fig. 6D-F). In summary, these results strongly 243 

suggest gene-specific translational regulation in response to different nutrient limitations but not 244 

different growth rates. 245 

 246 

Translational regulation patterns associate with codon usage  247 

Our findings revealed translational regulation of genes in response to different nutrient limitations but 248 

not in response to different growth rates, implying the existence of two classes of genes: those that 249 

change RTEs across conditions, and those with stable RTEs. We therefore investigated the variability 250 

of RTE across conditions (Fig. 5A). To obtain a global view, we first calculated the mean and variance 251 

of RTE for each gene across the 12 different conditions (Fig. 5B). The results show an overall positive 252 

correlation between the mean and variance of RTE. However, genes with similar mean RTE still 253 

exhibit remarkable differences in their RTE variance.  254 

To zoom in to a function-related view, we compared the translational regulation patterns of the 82 255 

pathways in E. coli[43], and they seem to be distinguished in the mean-variance biplot of RTE (Sup, 256 

Fig. 7). For example, four pathways with different biological functions occupied two distinguishable 257 

regions in the biplot (Fig. 5B, colored dots). Compared with the overall transcription and translation 258 

pattern of background genes (Fig. 5C), the TCA cycle and the pyruvate metabolism pathways shared 259 

similar translation patterns, with a small RTE variance (Fig. 5D). These two pathways are both 260 

involved in basic metabolic processes[44, 45]. Intriguingly, we found that they shared highly similar 261 

codon usage, with a Spearman’s rank correlation coefficient between their codon frequencies of 0.93 262 

(Fig. 5G). By contrast, the flagellar assembly pathway and the bacterial chemotaxis pathway both 263 

exhibit large RTE variance (Fig. 5E). In addition, their mean RTEs were significantly positively 264 

correlated across the 12 conditions (Fig. 5F). These two pathways are both involved in cell motion[46, 265 

47]. They also shared similar codon usage and the Spearman’s rank correlation coefficient between 266 
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their codon frequencies was 0.52 (Fig. 5H). Altogether, we found that pathways with similar 267 

translational regulation patterns tend to share similar codon usage. 268 

 269 

Codon usage partially predicts the cross-condition variability of RTE 270 

The observation above concerning specific pathways inspired us to quantify how much codon usage 271 

contributes to this cross-condition RTE variance. Overall, the mean codon frequencies for the top 200 272 

genes with the largest RTE variance and those for the bottom 200 genes with the smallest RTE 273 

variance exhibited negative correlation (Fig. 6A, Spearman’s rank correlation coefficient -0.55). 274 

Globally, certain codons appeared with changing frequencies for genes with different RTE 275 

variabilities. We singled out four codons with discrepant frequencies between the high-RTE-variability 276 

genes and the low-RTE-variability genes: The frequencies of AAA and GAT in the 2914 genes 277 

showed an overall increasing trend with increasing RTE variance (Fig. 6B, upper). On the other hand, 278 

the frequencies of CGT and CTG showed an overall decreasing trend with increasing RTE variance 279 

(Fig. 6B, lower). None of them is rare codon. 280 

Beside codon usage, RTE variance positively correlated with the mean value of RTE. In our data, 281 

there was also a weak correlation between RTE variance and mRNA level. Therefore, we needed to 282 

carefully separate the influences of the absolute value of RTE and mRNA level to examine whether 283 

codon usage directly contributes to the cross-condition RTE variability. We utilized a random forest 284 

model to quantify the contribution of different features to the prediction of RTE variance. The flowchart 285 

of the algorithm is shown in Fig. 6C. First of all, according to the median of RTE variance, we divided 286 

the 2914 genes into two clusters, which represent large and small RTE variance respectively. Then 287 

80% of the genes were randomly sampled as the training set, leaving 20% as the test set. For the 288 

training set, Breiman’s random forest algorithm was used to train a random forest model until the error 289 

converged. Different combinations of the features were separately used for training. By comparing the 290 

results from different feature combinations used for classification, we were able to quantify how much 291 

each single feature contributes to RTE variance. The receiver operating characteristic (ROC) curves 292 

suggested that the absolute value of RTE contributes most of the classification accuracy (Fig. 6D, 293 

yellow line). The addition of the feature mRNA level only improved the classification accuracy slightly 294 

(Fig. 6D, purple line). Nevertheless, the addition of the feature codon frequency improved the 295 

classification accuracy by approximately 10% (Fig. 6D, red line, and Table 2), suggesting a 296 
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nonnegligible and independent contribution from codon frequency to the cross-condition RTE 297 

variability. 298 

An advantage of random forest models is that the contribution of each feature to the classification 299 

result can be quantified. The rank of codons contributing to classification from our random forest 300 

model (Sup Fig. 8A-B) is consistent with the anti-correlated codons in Fig. 6A. 301 

Furthermore, we examined whether other features contribute to RTE variance, such as the 302 

distribution of the third base for codons, gene length, and translation pause motifs consisting of 303 

adjacent double or triple codons[48-50]. The results showed that these features have little effect on 304 

classification accuracy (Sup Fig. 8C, Sup Table 1). In addition, we used two other evaluation indices 305 

to test whether the conclusion was robust with respect to different definitions of RTE variability: the 306 

Fano factor and the coefficient of variation (CV, see Methods). In both cases, the addition of the 307 

feature codon frequency markedly improved the classification accuracy (Sup Fig. 9), consistent with 308 

our results using the index of RTE variance. In summary, codon usage contributed to the cross-309 

condition RTE variability of genes and the result was robust according to our tests. 310 

 311 

Codon-related RTE variability is an inherent feature of genes 312 

An intuitive hypothesis is that codon-related RTE variability could be due to the adaptation of tRNA 313 

pools to the environment. Indeed, codon usage has been suggested as a mechanism of translational 314 

regulation under oxidative stress or heat shock, as codon usage can be coupled to environment-315 

dependent factors such as the tRNA pool composition[25, 51]. An analogous extrapolation to explain 316 

our observed codon-related RTE variability would be as follows: different nutrient conditions lead to 317 

distinct compositions of the tRNA pool, so that genes with codon frequencies matching a particular 318 

tRNA pool would have increased translation efficiency in the corresponding nutrient condition, thus 319 

producing high cross-condition variability. This hypothesis predicts that codon-related RTE variability 320 

would be condition-dependent. That is, there would be different sets of codons for high RTE genes for 321 

each nutrient condition, and the identification of "high variability genes" would depend on which 322 

conditions are being compared. 323 

However, this hypothesis was found to test negative in our dataset.  We compared the C-, N-, and 324 

P-limited conditions in pairs. When any pair of conditions A and B were compared, genes with a 325 

significantly higher RTE in A and those with significantly higher RTE in B actually share similar codon 326 
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frequencies: there are no "condition-specific" codons that distinguish high-RTE genes in A from those 327 

in B (Fig. 6E). By contrast, negative correlations of codon frequencies were observed between highly 328 

variable RTE genes and stable genes, between any pairs of conditions (Fig. 6E). These observations 329 

indicate that genes can be divided into two classes according to their RTE variability, which have to 330 

do with their codon usage, but are independent of nutrient conditions. 331 

To further confirm that the codon-related RTE variability does not rely on specific conditions, we 332 

randomly selected sets of conditions from the 12 conditions to calculate RTE variance. Then the top 333 

200 and bottom 200 genes of RTE variance were used to calculate the correlation coefficient of codon 334 

frequency. We found a clear downward trend of the correlation coefficient with increasing number of 335 

conditions, asymptoting to a strongly negative correlation of r ~ -0.55 when more than 8 conditions 336 

were picked. This indicates that codon-related RTE variability is an inherent feature of genes that 337 

applies across multiple conditions.  338 
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Discussion 339 

How well transcript level represents protein abundance remains a controversial issue[2, 3]. 340 

Translational regulation is one of the key factors affecting the correlation between transcript level and 341 

protein abundance in bacteria[2]. In this work, we systematically examined the ribosomal behaviors in 342 

response to various nutrient conditions. Then combining ribosome profiling and RNA-seq in E. coli, 343 

we quantified genome-wide RTE under 12 conditions and observed a diverse range of gene-specific 344 

translational regulations in response to nutrient conditions. Furthermore, using a random forest model, 345 

we discovered that codon usage partially predicts the cross-condition RTE variability, such that a 346 

particular subset of codons, especially AAA (Lysine) and GAT (Aspartate), favors variability across all 347 

the nutrient conditions. By contrast, CGT (Arginine) and CTG (Leucine) disfavor RTE cross-condition 348 

variability (Sup Fig. 8). These findings broaden the understanding of translational regulation under 349 

environmental changes. What is more, our quantification of the contribution of codon usage to 350 

translational regulation can assist in the design of effective translation strategies in synthetic biology, 351 

as well as guide theoretical efforts to predict gene expression in response to environmental changes. 352 

One important note is that the notion of RTE used in this work is slightly different from the TE in 353 

previous studies[17, 52]. RTE represents the relative ribosomal resources allocated by per unit length 354 

of mRNA molecules. It does not stand for the absolute translation efficiency (TE), which also includes 355 

global translation-related factors such as the total number, the working fraction, and the elongation 356 

speed of ribosomes. These global factors affect the TE of all genes as a whole[18], while RTE 357 

involves translational differences between individual genes. Therefore, by quantifying RTE, we 358 

capture the ribosomal resources devoted to translation at the single-gene level, and thus can 359 

compare translational regulation among different conditions, excluding the effect of global translation-360 

related factors. In fact, according to comparison with previous studies on the translation efficiency of 361 

operons[17, 27], RTE reliably reflects translation differences between genes (Sup Fig. 3). 362 

Protein biosynthesis consumes a large amount of building blocks and energy in fast growing 363 

bacteria[53]. To ensure efficient allocation of translation resources and so maximize cell growth, the 364 

protein synthesis rate is precisely controlled in proportion to the stoichiometry of complexes or 365 

hierarchical functions[17]. We found that the overall mRNA-RTE correlation across genes is not 366 

affected by mutations in single genes such as ΔrplA and ΔleuB which are involved in translation 367 

processes (Sup. Fig. 11).  Previous studies reported gene-specific translational regulation in bacteria 368 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.19.488838doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.19.488838
http://creativecommons.org/licenses/by-nd/4.0/


15 
 

under various stimuli[12, 13], which enables a faster response to environmental stresses than through 369 

transcriptional regulation[2, 54]. In our findings, both negative and positive mRNA-RTE correlations 370 

are likely biologically meaningful. For genes not sensitive to environmental changes, the mRNA level 371 

and RTE may be negatively correlated to stabilize protein production rate. For genes responding to 372 

specific nutrient limitations, the RTE may positively correlate with its mRNA level to amplify the 373 

change of protein synthesis rate, thus leading to a stronger correlation between mRNA level and 374 

protein abundance[55]. Gene-specific translational regulation is observed under C-, N-, and P-375 

limitations. Therefore, the concerted regulation of transcription and translation may be a general 376 

strategy for cells to amplify their adaptation to environmental changes. In addition, the variance of 377 

RTE across conditions displays a large range, indicating that different genes are subject to varying 378 

degrees of translational regulation. 379 

Also, according to our data, we suspected that translational regulation not only acts on genes 380 

responding to specific stressful conditions, but also acts on genes regulating translation itself, forming 381 

possible feedbacks[56]. Studies have revealed certain ribosomal proteins as feedback regulators, 382 

such as L1, S4, and S7 [57, 58]. Previously, this kind of feedback regulation was believed to be 383 

associated with growth-rate-dependent ribosome synthesis[28]. In our findings, the RTEs of several 384 

proteins involved in translational regulation correlate strongly with their mRNA levels, indicating 385 

concerted translational regulation. Feedback regulation on translation allows for better regulation in 386 

the overall translation activity of cells, providing one additional possible strategy for bacteria to rapidly 387 

and effectively respond to environment changes. 388 

Our analysis suggested that codon usage not only contributes to condition-independent translation 389 

efficiency, but also partially predicts the variability of RTE across conditions. For condition-390 

independent translation efficiency, multiple factors encoded in mRNA sequences affect the initiation, 391 

elongation, and termination of translation[5-7]. In particular, genome-scale studies have revealed 392 

significant association between codon usage and translation efficiency[59]. Codon usage per se 393 

mainly contributes during the elongation process[60], as it couples translation rates to the composition 394 

of the tRNA pool. However, our analysis indicated that under environmental stresses, the codon-395 

related RTE variability across conditions was an inherent feature of genes, independent of specific 396 

conditions. Therefore, such RTE variability cannot be simply attributed to coupling between codon 397 

usage and the tRNA pool under any specific nutrient condition. This finding is consistent with the 398 
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speculation of a previous study that the change of tRNA composition leads to different translation 399 

efficiencies between stress-response and non-stress-response genes[25].  400 

One limitation of our study is the lack of a detailed mechanism for how codons contribute to gene-401 

specific translational regulation.  As the translation process from mRNA to protein involves many 402 

factors, the differences in codon frequencies among mRNAs cannot be directly mapped to differences 403 

in translation efficiencies. In fact, it has been reported that there are complex interactions among 404 

multiple factors affecting translation, making it difficult to characterize the relation between codon 405 

frequency and translation efficiency[23]. For example, trade-offs between tRNA-mediated codon 406 

selection and mRNA structure entangle their separate roles[61]. Therefore, it remains an intriguing 407 

puzzle how codon frequency, a condition-invariant innate property of a gene, influences a gene’s 408 

ability to respond to different conditions. We believe that in future research, a combination of technical 409 

approaches such as tRNA sequencing, mRNA structure probing, and translation-site-specific 410 

ribosome profiling will help uncover more mechanistic features of translational regulation[62, 63].  411 

 412 

413 
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Methods 414 

Cell strains and growth conditions 415 

Escherichia coli strain NCM3722 was grown in batch or continuous cultures. Dilution rates of 0.1 h-1 416 

and 0.6 h-1 were used to define slow and fast growth rates in chemostats. We utilized a 300mL 417 

volume chemostat (Sixfors, HT) with oxygen and pH probes to monitor the culture. The aeration rate 418 

was set at 4.5 l/h and pH was kept at 7.2 +/- 0.1. For minimal glucose media, 40 mM MOPS media 419 

(M2120, Teknova) was utilized with glucose (0.4%, Sigma G8270), ammonia (9.5 mM NH4Cl, Sigma 420 

A9434) and phosphate (1.32 mM K2HPO4, Sigma P3786) added separately. For defined rich media, 421 

the minimal media is supplemented with 10x ACGU (M2103, Teknova) and 5X Supplement EZ 422 

(M2104, Teknova). For carbon- and nitrogen-limited media, glucose and ammonia concentrations 423 

were reduced by 5-fold (0.08% and 1.9mM respectively). Phosphorus-limited medium contains 0.132 424 

mM K2HPO4. ΔleuB and ΔrplA mutants were produced by P1 transduction from the KEIO 425 

collection[64] into Escherichia coli strain NCM3722. 426 

 427 

Total RNA measurement 428 

The method for RNA measurement was adapted from You et al.[65]. The culture was 1.5 mL and 429 

centrifuged at 13,000g for 1 min to form pellets. The pellet was frozen on dry ice and the supernatant 430 

was used to measure absorbance for cell loss at 600 nm. Then the pellet was washed twice with 0.6 431 

M HCIO4, digested with 0.3 M KOH at 37 ℃ for 1h, and precipitated with 3 M HCIO4 to collect the 432 

supernatant. Then the pellets were extracted again with 0.5 M HCIO4. The supernatant was mixed 433 

and the absorbance was measured at 260 nm using Tecan Infinite 200 Pro (Tecan Trading AG, 434 

Switzerland). Finally, the total RNA concentration was the multiplication product of the absorbance 435 

value of A260 and the extinction coefficient (31 μg RNA mL-1). 436 

 437 

Total protein measurement 438 

The protein measurement method was adapted from You et al.[65]. The culture was 1.5 mL and 439 

centrifuged at 13,000g for 1 min to form pellets. The cells were washed with 1mL MOPS buffer once, 440 

suspended in 200 μL water again, and then placed on dry ice. All the supernatant was collected and 441 

cell loss was measured with A600nm. Then the samples were thawed to measure protein content. 442 

The samples were added with 100 μL 3M NaOH and heated at 98 ℃ for 5 min. The samples were 443 
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cooled to 20 ℃ for 5min. After that, 300 μL 0.1% CuSO4 was added in the samples for biuret assay. 444 

The samples were incubated at room temperature for 5 min and centrifuged at 13,000g for 1 min. The 445 

supernatant was then collected and the absorbance of 200 μL sample volume was measured at 555 446 

nm using software Gen5 in a Microplate reader (Synergy HT, BioTek). The total protein concentration 447 

in the cell was inferred using a known concentration of appropriately diluted albumin (23209, Thermo). 448 

 449 

Quantification of the total number and fraction of ribosomes 450 

The calculation of the total number of ribosomes was adapted from Li et al.[18]. The total number of 451 

ribosomes was calculated as 452 

�� =  �� ∙ �� ∙ ��� ∙
��

��
, 453 

where the Vc is cell volume (m3)[66], Cp is concentration of proteins (g/m3)[67], RPR represents RNA-454 

to-protein ratio, mr is the mass of the rRNA component of a ribosome (g)[68], and fr is the fractional 455 

mass of rRNA among total RNA. The quantification of fr was adapted from Li et al.[18]. 456 

Polysome profiling was performed to quantify the ribosome fraction. The experimental methods 457 

were adapted from Li et al.[18]. The polysome profiling data was processed using customized 458 

MATLAB codes. The baseline absorbance was estimated using the average of the last 50 readings 459 

where RNA was not detected, and this background was subtracted. By fitting the exponential decay 460 

function to the first peak of the non-ribosomal signal source, free nucleotides and tRNA backgrounds 461 

were removed. Then each ribosome peak was selected and quantified by the area under the curve.  462 

In order to quantify different kinds of ribosomes in the 70S peak, 170 mM KCl was used instead of 463 

100 mM NH4Cl. Cytolysis products were loaded into 10-30% linear gradient and centrifuged at 35,000 464 

r.p.m. in a SW41Ti barrels for 5h at 4 ℃. Then the MATLAB file-exchange scheme, Peakfit (2.0) esd 465 

used to fit the three overlapped peaks (50S subunit, 70S without mRNA, and 70S with mRNA binding) 466 

into three Gaussian distributions.  467 

 468 

lacZ induction and translational elongation rate measurement 469 

The measurement of ribosome elongation rate was adapted from Zhu et al.[69]. Isopropyl-β-D-470 

thiogalactoside (IPTG) (I2481C-25, Gold Biotechnology) with concentration of 5mM was added to the 471 

culture. Every 15 seconds, 1 mL of culture medium was taken and placed in a tube containing 10 μL 472 
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of 100mm chloramphenicol, immediately frozen in liquid nitrogen and stored at -20℃, followed by 473 

subsequent measurements. After thawing, 400 μL of the sample was added to 100 μL of 5xZ buffer 474 

solution (0.3M Na2HPO4.7H2O, 0.2M NaH2PO4.H2O, 50mM KCl, 5mM MgSO4, 20 mM β-475 

mercaptoethanol) and incubated at 37 ℃ for 10 minutes. 100 μL 4 mg mL-1 4-methylumbelliferyl-β-D-476 

galactopyranoside (MUG, 337210010, ACROS Organics) in DMSO was added to each sample every 477 

10 s for precise control of the reaction time. The samples were incubated in Eppendorf Thermomixer 478 

R at 37 ℃ at a mixing rate of 1400 r.p.m. for 30 min to 2 h, according to the enzyme expression 479 

levels. Then we added 300 μL 1 M Na2CO3 to stop the reaction. The tube was spun down at 16,000g 480 

for 3 min to precipitate cell debris. Finally, the fluorescence of 200 μL supernatant was measured with 481 

a microplate reader (365 nm excitation and 450 nm emission filter). We integrated the signals and 482 

performed a linear fit to infer the ribosome elongation rate. According to the previous study[69], the 483 

elongation time was corrected by subtracting 10 s from the measured delay time. 484 

 485 

RNA extraction and ribosome profiling 486 

The method of RNA extraction and ribosome profiling is described in Li et al.[18]. The cell collection 487 

step was the same as for polysome profiling in Li et al.[18] except that 1mM chloramphenicol was 488 

utilized in the sucrose solution. The footprinting and library preparation steps were adapted from Li et 489 

al.[17] After quantification of RNA concentration with NanoDrop, samples with 500µg RNA were 490 

digested with 750U MNase (10107921001, Roche) for 1 hour at 25˚C before being quenched with 491 

6mM EGTA. The lysates were then layered onto a 10%-55% sucrose gradient and centrifuged. The 492 

monosome fraction was collected and snap frozen in liquid nitrogen. There were no observed 493 

polysome peaks, which indicated thorough digestion. The RNA was separated using hot phenol and 494 

size selected on 15% TBE-Urea PAGE gels run for 1 hour at 210V. Gels were stained with SYBR 495 

Gold and visualized using Dark Reader (Clare Chemical Research). Finally, RNA fragments with size 496 

between 25-40 nt were extracted using isopropanol precipitation.  497 

 498 

Library preparation and sequencing 499 

RNA fragments from footprints were dephosphorylated at the 3’ end by PNK (M0201, NEB). The 500 

repaired fragments were linked to the Universal miRNA Cloning Linker (S1315S, NEB), reverse 501 

transcribed (18080044, Thermo), and circularized (CL4111K, Epicentre). rRNA was subtracted from 502 
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the circularized samples before PCR amplification (M0531L, NEB) and size selection. High quality 503 

PCR samples were checked by Bioanalyzer highly sensitive DNA chip. Deep sequencing was 504 

performed by Illumina HiSeq 2500 on Rapid flowcells with settings of single end and 75 nt-long read 505 

length. 506 

 507 

Mapping and sequencing data analysis 508 

Data processing including barcode splitting, linker trimming, and mapping were performed using 509 

Galaxy[70]. The processed reads were mapped to Escherichia coli genome 510 

escherichia_coli_k12_nc_000913_3 from the NCBI database with the BWA short read mapping 511 

algorithm[71]. Only the reads between 20-45 nt that aligned to the coding region were extracted for 512 

further analysis. 513 

To infer the ribosome A-site position, python package Plastid[72] was used to align the 3’ end of 514 

reads to the stop and start codons[73], which are known to have higher ribosome densities. We found 515 

that the offsets were 12 nt for stop codon and 15 nt for start codon. Therefore, we utilized 11nt for A 516 

site position and 14nt for P site. Further analysis was done using MATLAB and R codes. 517 

 518 

Analysis of deep-sequencing data 519 

The counts from ribosome profiling and RNA-seq were used to calculate relative translational 520 

efficiency (RTE) for each transcript: 521 

[RTE] =
[������������ ������]/[���� �����ℎ]

[�������� ���� �����]
 , 522 

where the footprinting counts were normalized by the total counts in one experiment, reflecting the 523 

percentage of ribosomes occupied by a gene. The ratio of footprinting counts to gene length reflects 524 

the relative ribosome density: the percentage of ribosomes occupied by per unit length of a gene. The 525 

relative mRNA levels were also normalized to the total counts and gene length as reads per kilobase 526 

million (RPKM). In addition, genes with log10(RNA-seq RPKM) > 1.5 were selected for subsequent 527 

analysis (selected genes n = 2914). 528 

Mean levels were taken as the average of the 12 conditions for analyzing the correlation between 529 

the mRNA level and RTE across genes. The Spearman's rank correlation coefficient was used for 530 

correlations both across genes and across conditions. In order to test the significance of the 531 
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distribution of correlation coefficients between mRNA and RTE across conditions, the RTE values for 532 

each gene were randomly scrambled among the 12 conditions. The resulting randomly ordered RTEs 533 

were used to recalculate the distribution of correlation coefficients, which was considered as the null 534 

distribution. Then we used the package ttest2 in MATLAB to test whether the two distributions are 535 

significantly different, and calculated the p-value. 536 

When comparing two different nutritional restriction conditions, the RNA-seq RPKM were averaged for 537 

three biological replicates. Then we screened for differential gene groups with log2(mRNA fold 538 

change) > 4 or < -4 and p-value < 0.05. To test the significance of RTE fold changes for the genes 539 

with differentially expressed mRNA, we first calculate the RTE fold change distribution for this group 540 

of genes. Then the distribution of the RTE fold changes for the whole set of 2914 genes was 541 

considered as the null distribution. A p-value was calculated using student’s t-test for the two 542 

distributions. All the above processes were performed with Matlab2020a. 543 

 544 

GO analysis and KEGG pathway analysis 545 

Functional enrichment analysis was carried out using function enrichGO in R package 546 

clusterProfiler[74]. In addition, genome wide annotation org.EcK12.eg.db for E. coli strain K12 was 547 

used. The enrichment results were filtered with an adjusted p-value < 0.05. Furthermore, function 548 

dropGO was used to refine gene ontology level. Besides, KEGG pathway enrichment analysis was 549 

carried out using function enrichKEGG in R package clusterProfiler[74]. Genes contained in the 82 550 

pathways of E. coli strain K-12 MG1655 were obtained from 551 

https://www.genome.jp/kegg/pathway.html. 552 

 553 

Codon usage analysis 554 

The codon frequency of a gene was defined as the ratio of the number of a certain codon to the total 555 

number of codons. The frequencies of 64 codons constituted the codon frequency vector of a gene. 556 

Then we calculated the background codon frequencies from the complete set of analyzed genes. To 557 

characterize the bias for a gene towards certain codons, the background codon frequencies were 558 

subtracted from the codon frequency vector. 559 
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Before comparing the codon usage between different pathways, the overlapped genes were 560 

removed. Then we calculated the average codon frequencies for all genes in a pathway. As shown in 561 

Fig 5G, the rarity of codons was ranked according to their background frequencies. 562 

 563 

Evaluation indices for RTE variability 564 

We used three different evaluation indices: the variance, the Fano factor, and the coefficient of 565 

variation (CV). The variance is defined as 566 

var(RTE) =  
∑�TE − RTE�

�

� − 1
 , 567 

where RTE
————

 is the sample mean of RTE, and the n is the sample size of RTE. The Fano factor is 568 

defined as 569 

Fano(RTE) =  
����

�

����
 , 570 

where �
RTE

�  is the variance of RTE, and the μRTE is the sample mean of RTE. The CV is defined as 571 

CV(RTE) =  
����

����
 , 572 

Where σRTE is the standard deviation of RTE, and the μRTE is the sample mean of RTE. 573 

 574 

Random forest algorithm 575 

We used the package TreeBagger in MATLAB to build the binary classification model. The number of 576 

trees was set to 200 and the minimum number of observations per tree leaf was set to 5. The number 577 

of variables to select at random for each decision split was set to the square root of the total variable 578 

number. In our model, the total variable number is 64, corresponding to the 64 codons. Finally, 579 

Breiman's random forest algorithm was invoked to perform the training[75]. 580 

As stated in the main text, features such as frequencies of the 64 codons, mRNA level, RTE 581 

absolute value, the distribution of the third base of codons, and gene length were selected and 582 

combined to determine their contribution to classification results. In addition, the frequencies of typical 583 

translation pause motifs were also used as classification features. 584 

1000 random samplings of the dataset were performed to exclude the contingency of results. We 585 

used true positive rate to evaluate the sensitivity, defined as 586 
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sensitivity =  
TP

TP + FN
 , 587 

where TP and FN refer to the number of true positives and false negatives, respectively. The 588 

specificity is defined as 589 

specificity =  
TN

TN + FP
 , 590 

The area under curve (AUC) was calculated as the area under ROC curve. To calculate the sensitivity 591 

and specificity, a classification threshold is needed. The score for each gene from the model is in the 592 

range of [0, 1]. If the score is above the threshold, it is considered a positive sample, otherwise it is 593 

considered a negative sample. The results shown in Table 2 used 0.5 as the classification threshold. 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 
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 605 
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 610 

 611 
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Tables 864 

 865 

Condition ID 1 2 3 4 5 6 7 8 9 10 11 12 

Nutrient limitation C-limited N-limited P-limited 
glucose 
minimal  

defined rich 
MOPS  

N-limited for 
ΔrplA 

Leu-limited for 
ΔleuB 

Growth rate 
(h-1) 

0.1 0.6 0.1 0.6 0.1 0.6 0.9 1.8 0.1 0.6 0.1 0.6 

Culture 
environment 

chemostat batch culture chemostat 

 866 

Table 1. List of the 12 different conditions for Escherichia coli in our measurements. E. coli was grown 867 

under glucose (C, carbon), ammonia (N, nitrogen) and phosphate (P, phosphorus) limited conditions 868 

in chemostats at two different dilution rates of 0.1 and 0.6 h-1 (equal to growth rates). ΔrplA and ΔleuB 869 

mutant strains were grown under ammonia and leucine limitations, respectively. Three biological 870 

replicates were performed for all the 12 conditions. 871 

 872 

 873 
 874 

Features Sensitivity Specificity Accuracy AUC 

mRNA 53.4±3.19% 53.47±3.08% 53.41±1.81% 0.54±0.02 

Codon 64.27±3.08% 71.96±2.9% 68.07±1.76% 0.75±0.02 

RTE 72.58±2.68% 72.5±2.61% 72.52±1.61% 0.8±0.02 

Codon + mRNA 66.44±3.07% 72.53±2.91% 69.45±1.87% 0.77±0.02 

Codon + RTE 81.95±2.33% 81.53±2.31% 81.72±1.52% 0.89±0.01 

Codon + mRNA + RTE 84.36±2.19% 82.99±2.24% 83.66±1.5% 0.91±0.01 

 875 

Table 2. Classification results of the random forest model. The table shows the average results with 876 

S.D. from a thousand random samples.  877 

 878 

879 
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Figures 880 

 881 

Figure 1. Cells adapt to nutrient conditions through different ribosomal strategies.  882 

(A) RNA-to-protein ratios for 12 conditions at different growth rates. Each data point represents one 883 

experimental measurement. 884 

(B) Fractions of assembled (70S) ribosomes under 12 conditions. The assembled ribosomes include 885 

free 70S monosomes, mRNA-bound 70S monosomes, and mRNA-bound 70S polysomes (multiple 886 

ribosomes on one mRNA). Free 70S, bound 70S, and polysome are represented in white, light, and 887 

dark colors, respectively. The bar heights represent mean values with error bars indicating s.e.m. 888 

from three biological replicates. 889 
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(C-E) Cells differentially regulate three ribosomal features in response to C-, N-, and P-limitations at 890 

the growth rates of 0.1 and 0.6 h-1. The three features include total number of ribosomes per average 891 

cell (see Methods), elongation rate, and fraction of bound ribosomes. These features are scaled 892 

linearly between the inner circle and the outer circle, which represent the minimum and maximum 893 

among all conditions, respectively. The scales of the three indicated axes are the same for panels C-894 

E. 895 

(F) Same as (C-E), but showing the differences between chemostat cultures and two batch 896 

conditions. The value of the outermost circle is larger than in C-E, especially the total number of 897 

ribosomes. 898 

(G) Averaged A-site ribosome density within the first and last 50 codons of the transcripts, from 899 

ribosome profiling analysis. Each curve shows the mean value from three replicates at each condition. 900 

Inset: ribosome density at the beginning of the transcripts. 901 

 902 

 903 

 904 

 905 

 906 

 907 
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 908 

Figure 2. Global view of mRNA-Relative Translation Efficiency (RTE) correlations across genes and 909 

across conditions. 910 

(A) Two types of correlations between mRNA level and RTE: across genes and across conditions. 911 

(B) Correlation between mean mRNA level and mean RTE, across different genes. Mean levels were 912 

taken as the average of all 12 conditions (Table 1). Each dot represents one gene, and color depth 913 

depicts the density of points.  914 

(C) Distribution of Spearman’s rank correlation coefficients between mRNA level and RTE across the 915 

12 different conditions. Each gene provides one such correlation coefficient, and distributions are 916 

shown for 2914 genes (blue bars – original data; gray bars – scrambling the RTEs among conditions 917 

for each gene). 918 
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(D-E) Example of two genes with negative correlation (D, gene fieF, left arrow in B) and positive 919 

correlation (E, gene ycaO, right arrow in B) between their mRNA levels and RTEs. Error bars 920 

represent s.e.m. from three biological replicates. 921 

 922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 

 930 

 931 

 932 

 933 

 934 
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 937 

Figure 3. The correlation between mRNA level and RTE is related to specific gene functions. 938 

(A-B) Gene ontology (GO) enrichment for the top 300 genes with the most negative correlation (A) 939 

and the most positive correlation (B) between mRNA levels and RTEs. The color of the dots 940 

represents the -log10 adjusted p-value, and the dot size represents the number of genes appearing in 941 

each biological process. 942 

(C-D) Genes regulating translation are themselves subject to translational regulation. Examples of 943 

positive correlation between mRNA level and RTE across different growth rates for one gene that 944 

promotes translation (C, gene rplA) and one that inhibits translation (D, gene rmf). Student’s t-test 945 

was used to calculate the p-value. Reads Per Kilobase Million (RPKM) is used for mRNA level. 946 
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 947 

Figure 4. Transcription and translation couple together to respond to nutrient limitations. 948 

(A) Comparison of transcription changes (log2 mRNA fold change, x-axis) and translation changes 949 

(log2 RTE fold change, y-axis) between carbon limitation and nitrogen limitation at the growth rate of 950 

0.1 h-1. The averages of three biological replicates are shown. Red dots represent genes with log2 951 

mRNA fold change (C-limited / N-limited) > 4. Blue dots represent genes with log2 mRNA fold change 952 

(C-limited / N-limited) < -4. p-value was used to test the significance of the RTE fold change between 953 

the highlighted genes and the background genes. 954 

(B) Same as (A), but showing the change between nitrogen limitation and phosphate limitation. Green 955 

dots represent genes with log2 mRNA fold change (N-limited / P-limited) < -4.  956 

(C-E) mRNA level (upper panel) and RTE level (lower panel) of the three groups of highlighted genes 957 

in (A) and (B). The three highlighted groups of genes are upregulated under carbon (C), nitrogen (D), 958 

and phosphate (E) limitations. 959 
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(F-H) Gene ontology (GO) enrichment analysis for the three highlighted gene groups in (A) and (B). 960 

The color of the dots represents the -log10 adjusted p-value, and the size represents the number of 961 

genes. 962 
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 975 

Figure 5. Pathways with similar gene expression patterns share similar codon usage bias. 976 

(A) Illustration of the question we investigated: when genes are classified by their cross-condition 977 

variance of RTE, what is the cause of this high-or-low variance classification? 978 

(B) Relationship between mean and variance of RTE across 12 conditions. Each dot represents one 979 

gene. Colored dots are genes involved in four selected pathways with different patterns of 980 

translational regulation. 981 

(C) Distribution of RTEs (upper) and mRNA levels (lower) of all genes, under the 12 different 982 

conditions. 983 

(D) Distribution of RTEs (upper) and mRNA levels (lower) for genes involved in TCA cycle (left panel) 984 

and those involved in pyruvate metabolism (right panel).  985 

(E) Distribution of RTEs (upper) and mRNA levels (lower) for genes involved in flagellar assembly (left 986 

panel) and those involved in chemotaxis (right panel). 987 
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(F) Correlation of mean RTE across 12 conditions between genes involved in flagellar assembly and 988 

bacterial chemotaxis. 989 

(G) Correlation of codon frequencies between genes in the two pathways described in (B). After 990 

removing the overlapped genes, there are 38 and 13 genes involved in each pathway, respectively. 991 

The 64 codons are dotted with sizes representing the rarity of codons in E. coli. 992 

(H) Correlation of codon frequencies between genes in the two pathways described in (C). After 993 

removing the overlapped genes, there are 38 and 15 genes involved in them, respectively. 994 

  995 
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 996 

Figure 6. Codon usage contributes to RTE variability across nutrient conditions. 997 

(A) Negative correlation between the codon frequencies for the top 200 and bottom 200 genes in their 998 

RTE cross-condition variances. Four anti-correlated codons are indicated by arrows. 999 

(B) Relationship between the gene-by-gene RTE variance (x-axis) and codon frequencies (y-axis), for 1000 

the four codons highlighted in (A). The average over 2914 genes is shown. The shadings represent 1001 

the fluctuation of codon usage frequencies and the highlighted lines show smoothed mean results. 1002 
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(C) Flowchart for predicting the classification of RTE cross-condition variance using a random forest 1003 

model. 1004 

(D) The ROC curves of the classification accuracy using different combinations of features. An 1005 

average of results for 1000 trainings was used. The shaded areas represent the S.D. Codon, mRNA, 1006 

and RTE stand for the codon frequency, the mRNA level, and the RTE absolute value, respectively. 1007 

(E) Codon frequency correlations (evaluated as in A) between different gene clusters when pairs of 1008 

conditions were compared (Sup. Fig. 10). The yellow box shows correlations between two clusters of 1009 

RTE up-regulated genes in each of the paired conditions. The blue box shows correlations between 1010 

RTE up-regulated and unchanged genes in each of the paired conditions.  1011 

(F) The correlation coefficient exactly as obtained in (A), but for different numbers of conditions used 1012 

to calculate the RTE variance. Each box was derived from all possibilities of taking n from the 12 1013 

conditions.  1014 
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