2020.06.08 Lighting Up Pattern Formation Along the Central Dogma

2020-06-04 14:43:34

北京大学定量生物学中心

学术报告 

题    目: Lighting Up Pattern Formation Along the Central Dogma

报告人: Hernan Garcia, Ph.D.

Assistant Professor, Department of Molecular & Cell Biology and Department of Physics, University of California at Berkeley

时    间: 68日(周一)20:00-21:00

地    点: Online (Zoom会议ID: 915 6803 5437)

https://zoom.us/j/91568035437

主持人:刘峰 研究员

摘 要:

During embryonic development, tightly choreographed patterns of gene expressionshallow gradients, sharp steps, narrow stripesspecify cell fates. The prediction of developmental outcomes from these transcription factor patterns and from regulatory DNA sequence remains an open challenge in physical biology that requires a quantitative understanding of the mechanisms that dictate the flow of information along the processes of the central dogma. We used stripe 2 of the even-skipped gene in Drosophila embryos as a case study in the dissection of the regulatory forces underpinning a key step along the developmental decision-making cascade: the generation of cytoplasmic mRNA patterns via the control of transcription in individual cells. Using live imaging, theoretical and computational approaches, we developed a comprehensive toolkit to watch the regulation of the entirety of the central dogma in real time. We found that the transcriptional burst frequency is modulated across the stripe to control the mean mRNA production rate. However, we discovered that bursting alone cannot quantitatively recapitulate the formation of the stripe, and that control of the window of time over which each nucleus transcribes even-skipped plays a critical role in stripe formation.  Theoretical modeling led to the discovery that these two regulatory strategiesthe analog control of the mean transcription rate by bursting and the binary control of the transcription time windowobey different kinds of regulatory logic, suggesting that the stripe is shaped by the interplay of two distinct molecular processes. Our work provides an example of how biological numeracy can be used as a driver for discovery as well as a stark reminder that reaching a predictive understanding of developmental decision-making will require a precise understanding of how gene expression is regulated not only across space, but also over time.

 

报告人简介:

Hernan G. Garcia is an assistant professor in the Departments of Molecular & Cell Biology and of Physics at UC Berkeley. As a Physical Biologist, his research aims to uncover the quantitative and predictive principles dictating biological phenomena, with particular emphasis on embryonic development. Hernan is a co-author of the textbook Physical Biology of the Cell and a co-director of the equally named course at the Marine Biological Laboratory in Woods Hole, MA.

Lab website: http://mcb.berkeley.edu/labs/garcia/