有许多重要的生物学过程会涉及到细胞群体的生长,比如肿瘤增殖,微生物群落生长,伤口组织愈合等。对于生长的细胞群体,局域的细胞生长会挤压周围的细胞,从而导致局域压强的升高。另一方面,细胞间的挤压会反过来减缓细胞的生长和细胞周期的进程1,从而对细胞群体的生长产生负反馈调节。与此同时,细胞群体在快速生长过程中常常会出现界面失稳(Fingering instability)的现象,这一现象十分常见,比如发生在上皮组织的铺展2和生物膜的斑图3形成中。
为了探究界面失稳现象对存在压强-生长反馈调节的细胞群体生长的影响,北京大学前沿交叉学科研究院,定量生物学中心/北大-清华生命科学联合中心的林杰课题组,建立了连续场力学模型,综合理论分析与数值模拟,揭示了细胞群体生长过程中界面失稳的力学机制,并进一步发现这种失稳现象能缓解细胞间的相互挤压,从而促进细胞群体的生长。该工作已发表于《Physical Review Letters》上,题目为 “Fingering Instability Accelerates Population Growth of a Proliferating Cell Collective”,并被选为编辑推荐(Editors’ Suggestion)。链接:https://doi.org/10.1103/PhysRevLett.132.018402。
模型中(图 1),作者将主动生长的细胞群体和外界基质粗理化为两相流体,将细胞间的相互粘连处理为表面张力,并引入细胞群体和外界基质与基底间的摩擦。同时,作者还在模型中引入了局域压强对生长速率的调控。数值上采用等高线法来模拟复杂的界面形态变化。
图 1:连续场力学模型示意图
作者首先通过线性稳定性分析,理论预言了界面失稳的条件。作者发现在这一体系中,除了已知的通过粘性差异诱导的界面失稳机制外(Saffman-Taylor不稳定性4),活性生长本身所带来的界面两侧速度梯度跳变也会引起界面失稳。作者在相图(图 2)中展示了这一额外的失稳机制对失稳条件的影响,并通过数值模拟确认了这一失稳条件。
图 2:细胞群体的界面失稳条件
为了进一步探究界面稳定性对细胞群体生长速率的影响,作者对满足失稳条件的细胞群体加上初始界面噪声,比较其与平整界面生长情形下的区别(图 3)。作者发现由界面失稳所导致的fingers不仅仅作为活性生长本身的结果,它还进一步缓解了细胞间的相互挤压,降低了细胞群体的内部压强,并促进了finger内细胞的局部生长,这些效应最终加速了细胞群体的整体生长。
图 3:失稳界面加速细胞群体的生长
这项工作不仅从力学角度解释了细胞群体生长过程中的界面失稳机制,还从进化角度暗示了界面失稳现象为何普遍存在:由于失稳可以缓解细胞间的相互挤压从而加速生长,选择压力会使得细胞改变自身的力学性质从而获得进化优势。本工作中,北京大学前沿交叉学科研究院定量生物学中心博士生叶毅扬为第一作者, 北京大学定量生物学中心/北大-清华生命科学联合中心林杰为通讯作者。该工作获得了科技部国家重点研发计划项目的支持和北大-清华生命科学联合中心的支持。
参考文献
1.Alric, B., Formosa-Dague, C., Dague, E., Holt, L. J. & Delarue, M. Macromolecular crowding limits growth under pressure. Nat. Phys. 18, 411–416 (2022).
2.Alert, R., Blanch-Mercader, C. & Casademunt, J. Active Fingering Instability in Tissue Spreading. Phys. Rev. Lett. 122, 088104 (2019).
3.van Ditmarsch, D. et al. Convergent Evolution of Hyperswarming Leads to Impaired Biofilm Formation in Pathogenic Bacteria. Cell Reports 4, 697–708 (2013).
4.The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312–329 (1958).
北京大学前沿交叉学科研究院定量生物学中心研究员
北大-清华生命科学联合中心PI
邮箱:
linjie@pku.edu.cn
实验室主页:
http://cqb.pku.edu.cn/jlingroup
研究领域:
1. Quantitative biology and systems biology
Biological processes are complex and often out-of-equilibrium. Nevertheless, universal and quantitative laws often emerge at the cellular or populational level. One example is the constant protein and mRNA concentrations in a growing cell volume, generally valid for any proliferating cells. We are interested in finding these laws and understanding the underlying mechanisms using the language of physics. Our research interests are broad, including but not limited to gene expression, cell size regulation, and cell physiology. We seek to collaborate with experimentalists and test our ideas using actual data. Our ultimate goal is to find unifying mathematical frameworks to describe various biological processes.
2. Soft living matter
Soft matter refers to materials easily deformed by thermal fluctuation and external forces, including polymers, liquid crystals, colloids, and many others. Living matter such as cells shares many similarities with soft matter: they can be easily deformed and exhibit complex rheological behaviors. A key feature that makes living matter fascinating is that they constantly consume energy and are out-of-equilibrium. Living matter also actively responds and adapts to the environment. We are interested in extending our knowledge of soft matter physics to living matter to gain deeper insights into non-equilibrium statistical physics and biology.
转自“生命科学联合中心”公众号