由于缺少诸如蛋白质马达或细胞骨架等主动运输的系统,细菌细胞质中各类生物大分子,比如蛋白质的有效扩散对于实现其体内的多种生物过程相当重要[1]。与此同时,细菌的细胞质又十分拥挤,这使得其中的粒子扩散相比于稀溶液环境受到很大的抑制[2]。有趣的是,实验上发现在活细胞中的大型细胞组分,如质粒、蛋白纤维和存储颗粒等,其扩散相比于在无活性的也就是被清除掉ATP的细胞中要快得多[3]。并且这种扩散的加速程度与粒子本身的大小有关,活细胞内大的细胞组分的扩散相比无活性细胞有显著增强,而相对较小组分的扩散则没有显著区别。
为了探究活细菌细胞质中加速扩散的物理机制,北京大学前沿交叉学科研究院,定量生物学中心/北大-清华生命科学联合中心的林杰课题组,将活细胞内代谢等活性过程带来的随机碰撞近似成一个白噪声的活性随机力,引入到描述活细胞内粒子满足的运动方程中。通过与大肠杆菌的实验数据的定量对比[3],作者发现细菌内活性随机力的涨落大小与粒子半径的三次方成正比。作者进一步发现,这个三次方幂律的物理机制来源于粒子受到一个大小恒定为0.57 pN、方向随机变化的活性力。该工作已发表于《Physical Review Research》,题目为 “Diffusion enhancement in bacterial cytoplasm through an active random force”。链接:doi.org/10.1103/PhysRevResearch.5.L032018
为了模拟组分大小横跨两个数量级的细胞质[4],作者使用多分散粒子体系进行数值模拟(图1),其中的粒子运动满足朗之万方程。对于无活性细胞,粒子只受到满足涨落耗散定理的热噪音,而在活细胞内粒子会额外受到一个自相关函数正比于粒子半径𝛾次方的活性随机力。
图1: 多分散粒子体系
通过模拟发现,不论是无活性还是有活性体系,粒子总体积分数𝜙的增加都会使扩散显著变慢(图2a, b)。活性随机力带来的扩散系数的相对增加比例D/D0-1在稀溶液中满足𝛾-1次方的幂律关系(图2c)。在拥挤环境下,尽管扩散系数的绝对值变小,小粒子的相对增加比例与稀溶液的结果定性上仍然符合地较好(图2d)。
图2: 数值模拟结果
通过与大肠杆菌内GFP-μNS和mini-RK2 质粒的实验数据进行定量对比[3],作者发现在多个体积分数下𝛾=3的活性随机力都很好地符合实验数据(图3a)。为了解释𝛾=3幂律关系的机制,作者通过理论分析发现假设粒子受到一个大小恒定、方向满足角度随机扩散的活性力能很自然解释𝛾=3的幂律关系。通过对比发现,这一模型也较好地符合实验数据(图3b),并且得到了这个力的大小是0.57 pN,与生物系统中蛋白质层面的力大小也较为符合[5]。
图3: 实验数据对比
该工作原创地将多分散系统和活性过程结合起来,解释了实验发现的与粒子大小相关的扩散加速的物理机制,揭示了复杂活性系统中涌现出的简洁性,促进了对于活细胞内物理过程的理解。北京大学前沿交叉学科研究院,北大-清华生命科学联合中心博士生孟令羽为第一作者, 北京大学定量生物学中心/北大-清华生命科学联合中心林杰为通讯作者。
[1] J. T. Mika and B. Poolman, Macromolecule diffusion and confinement in prokaryotic cells, Current Opinion in Biotechnology 22, 117 (2011).
[2] H.-X. Zhou, G. Rivas, and A. P. Minton, Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences, Annual Review of Biophysics 37, 375 (2008).
[3] B. Parry, I. Surovtsev, M. Cabeen, C. O’Hern, E. Dufresne, and C. Jacobs-Wagner, The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity, Cell 156, 183 (2014).
[4] T. Ando and J. Skolnick, Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion, Proceedings of the National Academy of Sciences 107, 18457 (2010).
[5] R. Milo and R. Phillips, Cell biology by the numbers (Garland Science, 2015).